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Abstract—Pollen recognition has been shown to be important
for a number of areas ranging from criminal investigations to
paleoclimate studies. However, these palynology studies rely on
highly qualified professionals to analyze pollen grains, which
have become scarce and costly. Therefore, the automation of this
task using computational methods is promising. Deep learning
has proven to be the ultimate technique in computer vision
tasks, but is very difficult to build a pollen data set with
size enough to train such networks from scratch. This study
investigated the use of transfer learning from pre-trained deep
neural networks for pollen classification and compared their
results with training from scratch and with promising pre-
designed features. Additionally, we introduced the biggest data
set of pollen to the date. Experimental results achieved up to
96.24% of classification accuracy, suggesting that the fine-tuned
deep learning architectures can be successfully applied to pollen
classification.

Index Terms—Pollen recognition, convolutional neural net-
works, deep learning, transfer learning.

I. INTRODUCTION

Palynology, the scientific discipline concerned with the
study of plant pollen, spores and others microscopic planktonic
organisms, arises from the morphological formation of such
particles or grains. The main features of pollen grains are
related to size, shape (polarity, symmetry), openings and
ornamentation. Pollen grains are not subject to decay or phys-
ical alteration due to variations in environmental conditions,
making their genetically established features, generally quite
stable and of great diagnostic value. Identification of pollen
has greatly aided in delineating the geographical distribution
of many plant groups from millions of years ago to the
present [1]. Palynological studies have also been helpful to
emit alerts for people with allergies to same pollen [2] and
to establish the location or seasonal time frame for crime
scenes [3], to certificates honey production [4], to determine
agricultural practices occurring at archaeological sites [1], and
trace relations between different groups of plants and their
evolutionary lines [5].

Computer-based pollen recognition relies on two main ap-
proaches for image feature extraction: pre-designed feature
extraction and automatic feature learning. Pre-designed fea-
ture extraction summarizes some specific visual information
considering algorithms that describe attributes based on color,
texture or shape properties. The automatic feature learning is
focused on neural networks that learn some internal represen-
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tation able to extract features, such as in convolutional neural
networks (CNNs).

The researches [6]—[8] focused on the use of texture fea-
tures. Marcos et al. [7], for example, combines features of
Haralick’s gray-level cooccurrence matrices (GLCM), log-
Gabor filters (LGF), local binary patterns (LBP) and discrete
Tchebichef moments (DTM). Results on a 15-class pollen
data set were 95% accurate. There are also several researches
that employ combinations of shape and texture features [9]—
[17]. Tello-Mijares et al. [11] used geometric descriptors,
first order texture statistics and second order GLCM-based
texture statistics obtained from the L*a*b* color model. The
best result that uses linear discriminant analyses (LDA) for
dimensionality reduction was 95.6% accurate on a 12-class
polen data set. Pozo-Banos et al. [13] also combined geometric
and texture features and achieved 94.92% of accuracy on
a 17-class pollen data set. Redondo et al. [17] proposed
a segmentation-based feature extraction approach, and using
LDA for dimensionality reduction achieved 99% of accuracy
on a 15-class pollen data set.

Focusing on the relatively new approach called automatic
feature learning, Daood et al. [18] explored transfer learning
and experimentally fine-tuned the whole CNN. The proposed
method was 94% accurate on a 30-class pollen data set.
Sevillano and Aznarte [19] achieved 97% of accuracy in a 27-
class pollen data set using transfer learning from a pre-trained
AlexNet network and a linear discriminant classifier. Wu et al.
[20] developed a automatic system for bioaerosol sensing and
classification using a Raspberry Pi board and deep learning,
achieving 94% of accuracy on six type bioaerosols of plant,
including pollen and spores.

This article focuses on the automatic feature learning
through CNNs, transfer learning and data augmentation. The
main contributions are: 1) the introduction, for our best knowl-
edge, of the largest pollen image data set; 2) a comprehensive
experimentation involving state-of-the-art pre-designed fea-
tures, training of deep-learning architectures from scratch, and
two approaches of transfer learning named feature extraction
and fine-tuning. Experiments on the introduced 134-class
pollen data set suggest that fine-tuning a pre-trained deep
CNN on a large data set are applicable to pollen classification
achieving up to 96.24% of accuracy.

The remainder of this article is organized as follows: Sec-
tion II describes the materials and methods used to classify
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pollen types. Section III shows the results and finally Sec-
tion IV concludes the paper.

II. MATERIAL AND METHODS
A. The 134-class pollen data set

We introduce a new image data set containing 134 types
of pollen. The data set was built with different reagents that
produces different colors of background (see Fig. 1) and
different microscopes. As on each microscope slide there are
multiple pollen grains that often overlaps, squared size regions
of interest were extracted to isolate as much as possible the
pollen grains in each image produced. Table I shows the
species of plants corresponding to the pollen data set and
the number of samples of each pollen. Fig. 1 illustrates one
sample of each pollen given in the same order of Table I when
traversing the Fig. 1 in a row by row fashion and the Table I
in a column by column fashion. Observing Table I can be seen
that the data set contains multiple species of the same genera,
which often present similar visual characteristics, as can be
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Samples of each pollen type of our data set.

Fig. 1.

B. Methodology

The methodology proposed aims to investigate the use
of transfer learning from CNNs pre-trained on the 2012
ImageNet data set for pollen classification and compare
their results with training from scratch and with promising
pre-designed features.

Convolutional Neural Networks (CNNs) and Architectures

Deep CNNs are the most used feature learning model for
image classification and recognition [21]-[24]. Its basic com-
position consists of three types of layers: convolutional layers,
subsampling (pooling) layers and fully connected layers. The
convolutional layers, known as the heart of CNNs, use the

convolution operation to achieve weight-sharing. Subsampling
layers are used to reduce the dimensionality which usually uses
the average or the maximum on a pool of values. A few fully
connected layers, followed by a softmax layer [23], usually
constitutes the final layers used for classification, producing a
normalized probability for each class.

Given that CNNs are difficult to train with limited comput-
ing resources and small data sets, large computing companies
such as Google and Microsoft have developed CNNs architec-
tures and trained them in large image data sets. The main idea
is that the ability of these networks to extract features can be
contribute to new problems.

As known from the CNN theory, the first convolutional
layers learn generic features (i.e., edges and color blobs) that
are useful for many applications. The network progressively
evolves this generic features to more specific features in
subsequent layers. Therefore, a set of generic features learned
in a large image data set can benefit other applications. In
our experiments we used InceptionV3, ResNet and DenseNet
architectures trained on the 2012 ImageNet image data set,
which contains 1000 classes.

InceptionV3: It was proposed by Google’s research team,
focusing mainly on reducing the computational load of CNNss,
seeking to maintain the same level of performance [24]. The
innovation came from the new module called inception which,
for most part, can be described as four parallel paths of
convolution filters 1 x 1, 3 x 3, 5 x 5. Because of its parallel
implementation, in addition to the subsampling layers in each
block, the model execution time is fast. InceptionV3 is a large
CNN containing 23.2 millions of parameters.

ResNet: It stands for Residual Network [22]. As the name
indicates, it introduces what is called residual learning. In
general in deep CNNs several layers are stacked and trained
to learn features. In residual learning, instead of learning
features the network learns residues. Residues can be imagined
as a subtraction of features learned from the input layer
to the current layer. ResNet learns residues using shortcut
connections, that links the nth layer to some (n + k)th layer.
Literature results have shown that it is easier to train ResNet
than tradicional CNNs. ResNet can be configured ranging from
18 to 152 layers having up to 100.11 millions of parameters.
DenseNet: It is a logical extension of ResNet having as funda-
mental building block the concept of residue connections. In
contrast with ResNet, DenseNet proposes to concatenate the
previous layers instead of using a summation. DenseNet [21]
connects each layer to every other layer in a feed-forward
fashion. While traditional CNNs with L layers have L groups
of connections — a group between each layer and its subsequent
layer, DenseNet has L(L + 1)/2 groups of connections. In
summary, for each layer, feature maps of all predecessor layers
are used as input, and its own output map is used as input to
all subsequent layers. The DenseNet used can be considered
a small CNN having 7 millions of parameters in our domain.
Networking training

We considered three types of CNN training: training from
scratch, fine-tuning of the whole pre-trained network and
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TABLE I

POLLEN SPECIES, CLASS ID AND THE NUMBER OF SAMPLES (#) IN EACH CLASS OF THE 134-CLASS POLLEN DATA SET.

ID Specie # ‘ ‘ ID  Specie # ID Specie #

0 Adenanthera pavonina L. 25 45 Chamaecrista ramosa 25 90 Piptadenia stipulacea 22
1 Aeschynomene americana 25 46 Chamaecrista repens var. multijuga 34 91 Piptochaetium montevidense 25
2 Aeschynomene benthamii 28 47  Chamaecrista serpens 23 92 Poincianella bracteosa 26
3 Aeschynomene viscidula 22 48 Chloroleucon foliosum 24 93 Prosopis juliflora 31
4 Ageratina asclepiadea 26 49 Citrus x limonia 34 94 Pseudomalachra ciliaris 22
5 Agonandra brasiliensis 29 50  Coccoloba latifolia 26 95 Senegalia riparia 25
6 Albizia lebbeck 11 51 Cocos nucifera 29 96 Senna acuruensis 28
7 Alternanthera tenella 22 52 Combretum lanceolatum 34 97 Senna alata 33
8 Alternanthera brasiliana var. villosa 25 53 Commelina benghalensis 31 98 Senna cana var. hypoleuca 25
9 Amaranthus viridis 26 54 Conocarpus erectus 26 99 Senna chrysocarpa 25
10 Amburana cearensis 27 55 Cordia oncocalyx 29 100 Senna gardneri 28
11 Anadenanthera colubrina 25 56  Curatella americana 29 101 Senna macranthera 23
12 Arcytophyllum nitidum 26 57  Crateva tapia 35 102 Senna occidentalis 32
13 Azadirachta indica 25 58 Crotalaria spectabilis Roth 25 103 Senna pendula 30
14 Asemeia violacea 27 59 Croton hirtus 25 104 Senna pilifera 28
15 Bauhinia monandra 25 60  Cynodon dactylon 26 105 Senna quinquangulata 28
16  Bejaria resinosa 23 61 Dahlia imperialis 23 106 Senna spectabilis 27
17 Bixa orellana 23 62 Dalechampia scandens 26 107 Senna trachypus 35
18 Boerhavia coccinea 25 63 Delonix regia 28 108  Senna uniflora 31
19 Bomarea hirsuta 27 64  Dicliptera mucronifolia 24 109  Senna velutina 27
20 Borago officinalis 27 65 Drimys granadensis 26 110 Sida angustissima 24
21 Borreria spinosa 37 66  Echinodorus lanceolatus 25 111 Sida ciliaris 16
22 Borreria verticillata 34 67 Euphorbia hyssopifolia 28 112 Sida cordifolia 24
23 Brachyotum strigosum 31 68 Euploca Polyphyllum 22 113 Sida galheirensis 26
24 Bromus catharticus 26 69 Froelichia humboldtiana 31 114 Sida linifolia 26
25 Bucquetia glutinosa 47 70 Gossypium hirsutum 21 115 Sida santaremensis 25
26  Bunchosia aff. acuminata 25 71 Guadua trinii 26 116  Sida spinosa 25
27 Byrsonima sericea 29 72 Ipomoea asarifolia 25 117 Simarouba amara 38
28 Caesalpinia pulcherrima 28 73 Ipomoea bahiensis 25 118  Simarouba versicolor 32
29 Calliandra sessilis 24 74  Ischaemum minus 27 119  Solanum paniculatum 31
30  Canavalia brasiliensis 25 75  Laguncularia racemosa 30 120 Spartina ciliata 35
31 Capsicum annuum 28 76 Macroptilium lathyroides 27 121 Spathodea campanulata 28
32 Carduus acanthoides 31 77 Malpighia emarginata 27 122 Sphagneticola trilobata 36
33 Cassia fistula 31 78 Melanthera latifolia 25 123 Spondias macrocarpa 26
34 Cedrela odorata 28 79 Mesosphaerum suaveolens 26 124 Swartzia simplex var. grandiflora 35
35  Centratherum punctatum 30 80  Mimosa arenosa 34 125  Syzygium malaccense 23
36 Centrolobium tomentosum 23 81 Mimosa candollei 24 126 Tanaecium selloi 26
37 Centrosema virginianum 24 82 Mimosa hirsutissima var. hirsutissima 37 127  Tarenaya spinosa 25
38 Chaetocalyx scandes var. pubescens 25 83 Mimosa pigra 30 128  Terminalia catappa 29
39 Chamaecrista calycioides 23 84  Mimosa tenuiflora 26 129 Tephrosia purpurea 21
40  Chamaecrista diphylla 25 85  Mouriri guianensis 25 130 Trischidium molle 32
41 Chamaecrista ensiformis 26 86 Myracrodrum urundeuva 28 131 Tridax procumbens 25
42 Chamaecrista flexuosa 26 87 Olyra latifolia 29 132 Wedelia paludosa 30
43 Chamaecrista hispidula 20 88 Parkinsonia aculeata 29 133 Zornia latifolia 24
44 Chamaecrista nictitans 26 89 Petiveria alliacea 27

feature extraction (training only the softmax layer). In all cases
was employed the minimization algorithm that consider the
cross-entropy loss function L:

L=-> pilog(f;) 1)

where p is the ground-truth distribution and f is the estimated
distribution by the network.

The ground-truth distribution p is given for each image of
the data set. Considering a data set of n samples, containing
c number of classes, the distributions are given by:

p" = (1 pe) (2)

~_ J 1, if i = class of the image
Pi=1 o, otherwise

To update the CNN weights minimizing the cross-entropy
we used the stochastic gradient descent method. For that, 10%
of the data set were separated for test, 10% for validation

and 80% for training. When training from scratch and feature
extraction (training only the softmax layer) we chose an initial
learning rate of le-2 and it was divided by 10 when three
consecutively epochs does not improve the validation accuracy.
For fine-tuning we initiated the learning rate at le-4 since we
want to change minimally the pre-learned weights.
Pre-designed features

We experimented HOG, GABOR and LBP methods that
have presented promising results in several studies. We also
experimented feature combinations and dimensionality reduc-
tion by LDA. In all experiments with pre-designed features
we used k-nearest neighbor (kNN), with k£ = 1, for classifica-
tion. The Tablell summarizes the experimented pre-designed
features, where #feats refers to the number of features.
Preprocessing

As the pre-trained CNNs used for transfer learning have a
fixed input layer structure, the pollen samples were resized
accordingly. For the pre-designed features the images were
resized to 299 x 299 pixels. The resize process does not deform
the samples once they were extracted in square dimension.
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TABLE II
DESCRIPTION OF THE PRE-DESIGNED FEATURES. WE DID NOT USE
GABOR INDIVIDUALY BECAUSE IT PRODUCES A VERY HIGH NUMBER OF
FEATURES INCURRING IN A HIGH COMPUTATIONAL COST FOR

CLASSIFICATION.

Method Description/Setting #feats

HOG uses cell size of 32 x 32 pixelsand 1296
block size of 4 x 4 pixels

LBP uses cell size of 32 x 32 pixels 4779

Gabor/LDA applies 40 filters, performs down- 134
sampling of 4 x 4 and dimension-
ality reduction by LDA

HOG+LBP concatenates HOG and LBP fea- 6075
tures

HOG+(Gabor/LDA) concatenates HOG e Gabor/LDA 1430
features

LBP+(Gabor/LDA) concatenates LBP e Gabor/LDA 4913
features

HOG+LBP+(Gabor/LDA) concatenates HOG, LBP e Ga- 6209
bor/LDA features

(HOG+LBP+Gabor)/LDA  applies LDA on the concatenation 134
of the features produced by each
method

HOG/LDA+LBP/LDA+ applies LDA on the features pro- 402

Gabor/LDA duced by each method and concate-

nates the reduced feature sets

Given that the data set contain a small number of samples
per class, to apply CNNs it is essential the use of data
augmentation. Data augmentation is a ubiquitous technique
for increasing the size of labeled training sets by apply
transformations that preserve class labels [23], [25], [26]. Data
augmentation can be seen as a way to insert knowledge about
variances in a task or domain. The most common image
transformation are rotation, translation, mirroring, scaling,
noise addition and lightning change. The process of data
augmentation is also justified by the need of a large volume of
data for training the network without causing overfitting [26].
In our experiments we augmented the training data set by
performing rotations of one degree between -15° and 15° in
each image.

IIT. RESULTS

Our experiments focused on two main analysis: 1) the com-
parison between training deep CNN architectures from scratch
and the use of two modalities of transfer learning (feature
extraction and fine-tuning); and 2) comparison between pre-
designed features and feature learning.

Fig. 2 shows the accuracy results obtained by the deep
CCN architectures InceptionV3, DenseNet-121 and ResNet-50
considering the three type of learning: training from scratch
(random initialization), feature extraction and fine-tuning. In
both feature extraction and fine-tuning we used the architec-
tures pre-trained on the 2012 ImageNet data set and rebuilt the
softmax layer accordingly to the number of class of the data
set. The difference is that in feature extraction we only train
the softmax layer, while in fine-tuning the weights of the entire
network are adjusted. Instead of fixing the number of epochs of

training we adopted an early stopping strategy that monitor the
validation loss for the last 10 epochs; if no progress is noted
on the validation set during the last 10 epochs the training
stops. Can be seen on Fig. 2 that feature extraction did not
produce a satisfactory results, suggesting that generic features
learned in a large data set does not apply to pollen recognition.
On the other hand, fine-tuning a pre-trained network on a big
data set produced a gain in accuracy of 6.65% in average.

Table IIT shows the accuracy results of pre-designed features
versus feature learning with fine-tuning. Can be seen that fine-
tuned CNNs produce far superior results than the defined pre-
designed features. We also experimented different sizes of
ResNet varying the number of layers from 18 to 152 and
noted that the number of layers of ResNet did not increase
the accuracy rate. Regarding the CNN architectures can be
noted that the best result was obtained by DenseNet, which
is the smallest architecture in terms of the number of param-
eters. When comparing the traditional Inception CNN with
residue-based CNNs (ResNet and DenseNet) can be noted that
residue-based CNNs achieved better results. This result can be
justified due to the densely shortcut connections of DenseNet
that minimize the well know problem of vanishing/exploding
gradients, which occurs when a large number of layers are
stacked.
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Fig. 2. Accuracy rate comparing randomly initialized weights, feature

extraction and fine-tuning.

TABLE III
PRE-DESIGNED FEATURE METHODS COMPARED TO FINE-TUNE FEATURE
LEARNING ON DIFFERENT CNN ARCHITECTURES.

Method/Architecture Accuracy
. HOG 35.39%
g LBP 58.18%
§ Gabor/LDA 49.09%
“‘_; HOG+LBP 56.26%
& HOG+(Gabor/LDA) 42.84%
-2 LBP+(Gabor/LDA) 59.96%
8 HOG+LBP+(Gabor/LDA) 57.98%
©  (HOG+LBP+Gabor)/LDA 48.68%
&~ HOG/LDA+LBP/LDA+Gabor/LDA  57.08%
o  InceptionV3 92.96%
g DenseNet 96.24%
§ Resnet-18 95.54%
- Resnet-34 93.66%
5 Resnet-50 96.01%
§ Resnet-101 94.84%
M Resnet-152 95.07%
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IV. CONCLUSION

The identification of pollen has great importance in several
applications, ranging from scientific to industrial ones. In
this study we introduced the largest data set of pollen and
compared CNN feature learning with pre-designed features.
We also used three promising architectures of CNNs and
investigated three ways of training such CNNs: from scratch
and two modalities of transfer learning named feature extrac-
tion and fine-tuning. Our results show that feature learning
produced far more accurate results than pre-designed features,
indicating that is quite difficult to design features for a large-
scale pollen data set. Regarding CNNs training we found
that feature extraction is not enough to produce satisfactory
results for our pollen recognition problem. Also we found
that training from scratch, even augmenting the training data
set at 30 times, produced inferior results (around 6.65% of
accuracy) than fine-tuning a pre-trained CNN in a large data
set. Considering the CNN architectures we found the better
result with DenseNet, achieving up to 96.24% of accuracy.
As DenseNet is the smallest CNN regarding the number of
parameters, in future work we intend to design a lightweight
residual CNN architecture.
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