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Abstract—Fingerspelling is a crucial part of sign-based com-
munication, however its recognition remains a challenging and
mostly overlooked computer vision problem. To address it, this
paper presents a system that recognizes the 24 static fingerspelled
alphabet signs of the American Sign Language. The system
consists of two algorithmic stages, comprising an efficient pre-
processing phase that generates candidate hand-region proposals,
followed by their deep-learning based classification. Specifically,
the first stage exploits own earlier work on hand detection and
segmentation in videos that also contain the signer’s face, allowing
face detection to drive skin-tone based hand segmentation, with
motion further utilized to localize hands, extending it with a
peak detection module that yields proposal regions likely to
contain the signs of interest. These regions are then classified
by a variant of a convolutional neural network that extends
traditional convolutions to quadratic operations on the inputs,
being, to our knowledge, the first application of such architecture
to this task. Both system stages are evaluated on three well-known
fingerspelling corpora, significantly outperforming a number
of alternative approaches under both multi-signer and signer-
independent experimental frameworks.

Index Terms—Fingerspelling, ASL, CNN, detection, classifica-
tion

I. INTRODUCTION

Sign language recognition constitutes a popular field of
research that has attracted increasing interest over the last
decade, due to its potential of meeting the communication
needs of the speech and hearing impaired [1]–[3]. However,
while there have been dramatic breakthroughs in oral speech
technologies, less progress has been observed in the domain of
sign languages, primarily due to the challenging nature of the
underlying computer vision problem, e.g. the visual similarity
of specific signs and the hand articulatory complexity.

Among the sign language recognition schemes in the litera-
ture, a limited number of works have focused on the prob-
lem of fingerspelling recognition. Fingerspelling constitutes
a critical component of sign-based communication, as it is
commonly used for prominent words lacking unique signs,
such as names, technical terms, or foreign words. Example
of such works include [4], [5], where convolutional neural
networks (CNNs) are used for static American Sign Language
(ASL) fingerspelling alphabet recognition from depth-map and
color images, the system in [6] that recognizes 20 out of
24 static ASL signs through PCA extracted features, as well
as [7] that employs CNNs with multiview augmentation and
inference fusion from depth images for this task. Further, in [8]

histograms of oriented gradients (HOG) and Zernike moment
feature extractors are used in conjunction with a deep belief
network classifier, while in [9] a system that exploits hand
tracking devices and an SVM classifier is introduced. Addi-
tionally, the survey in [10] uses LBP histogram features based
on color and depth information with an SVM classifier for
recognition, while the fingerspelling ASL recognition systems
in [11], [12] rely on semi-Markov conditional random fields
and recurrent neural networks using deep neural network-
based features.

In this paper, we address the problem of recognizing static
signs of the ASL fingerspelling alphabet in video streams,
focusing on handshapes rather than motion. Our approach
is based on two distinct pillars: handshape extraction and
subsequent multi-class classification. Hence, we introduce a
hybrid, vision-based, two-stage system for effective handshape
extraction through an image processing pipeline and hand-
posture classification based on a CNN variant, as also schemat-
ically depicted in Figure 1.

Specifically, for the first stage of the proposed system, we
exploit the image processing scheme of our earlier work [13],
aiming to efficiently detect very few proposal windows likely
to contain the signs of interest, which will be further examined
by the system’s second, classification stage. That work primar-
ily incorporates facial information obtained by a fast off-the-
shelf face detector [14] into skin-tone based hand segmentation
[15]. For that purpose, it is assumed that the videos under
consideration also include relatively frontal head-pose data,
which is typically the case in the sign language domain since
facial information is crucial to signing. The aforementioned
components are complemented by motion-based Kalman filter-
ing [16] for hand tracking, as well as handshape segmentation
by Otsu’s thresholding [17]. The pipeline of [13] is further
extended in this paper by a peak detection module to yield
candidate handshapes most likely to “express” alphabet signs.

Subsequently, these are fed to a modified CNN classifier
for static ASL fingerspelled alphabet sign recognition. Most
deep learning classifiers are known to require large amounts
of labeled data to generalize well, but such data are limited
for fingerspelling. To counter the issue, and inspired by the
prior work of [18], [19], we propose an altered convolution
operation to improve CNN learning capacity. Specifically,
focusing on the convolution scheme, instead of it being a linear
combination of a filter matrix and the input image elements,
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Fig. 1. Block diagram of the proposed two-stage system.

we propose a non-linear form produced by a quadratic function
of the inputs. Transforming the inputs through such a function
contributes to the non-linear behavior of the network output,
aiming to provide better generalization. At the same time,
inclusion of the preprocessing stage improves accuracy and
yields low computational cost, as the CNN classifier is fed
with very few regions that are likely to contain hand-signs.

Further details of the proposed system are provided in
Section II. The approach is benchmarked on three video
fingerspelling datasets, as presented in Section III, where both
system stages are evaluated. In particular, both stages are found
to significantly outperform a number of alternative approaches
under two experimental frameworks: multi-signer and signer-
independent, the latter particularly demonstrating the success-
ful generalization achieved. Finally, the paper conclusions are
summarized in Section IV.

II. PROPOSED MODEL

This section describes in detail the proposed methodology
for performing ASL fingerspelled alphabet recognition from
video data. As already discussed, it comprises two main stages:
(i) a preprocessing pipeline, slightly modified from [13], and
(ii) a classification framework based on a CNN variant, both
detailed next.

A. Preprocessing stage

1) Skin-tone estimation based on face detection: To best
capture the skin color range, the proposed pipeline, as de-
scribed in [13], commences with face detection by means of
the Viola-Jones algorithm [14]. After successful face detection,
the central rectangular region of the facial bounding box (nose
area) is extracted (see also Figures 2(a)-(b)) and converted to
the YCbCr color space, in order to drive the skin segmentation
step that follows. In case of face detection failure, the image
frame is subjected to skin segmentation in the YCbCr color
space based on specific threshold values [15], instead of the
skin segmentation step below.

2) Skin segmentation: Based on the skin-tone information
provided by the extracted nose region above, skin region
segmentation in the YCbCr color space is applied. Specifically,
after the image frame transformation to the YCbCr color space
(see Figure 2(c)), skin pixels are classified based on the range
of the corresponding YCbCr values of the extracted nose
region. Subsequently, morphological operations are applied
for noise elimination, and a binary image is generated (see
Figure 2(d)).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Preprocessing pipeline example: (a) Input image marked with a
rectangular box enclosing the detected face; (b) the central square of the
detected face region (zoomed-in); (c) input image converted to the YCbCr
color space; (d) segmented skin region; (e) binary image with detections
encompassed with rectangular bounding boxes; (f) resulting image with the
yellow rectangular box illustrating the moving object (hand); (g) segmented
hand; and (h) hand trajectory (sequence of upper-left hand coordinates) with
red squares denoting handshapes retained after peak detection.

3) Skin region motion tracking: To avoid incorrect skin
region detection, in case of areas of similar skin-tone but
containing no skin, after skin segmentation and under the
assumption that hands are moving objects, we employ Kalman
filtering [16]. As described in detail in [13], the main idea is to
forward the location of the skin regions previously extracted
(excluding the face region) to the Kalman filter, in order to
associate each of them with a related track, thus rejecting
detections that do not correspond to moving objects (see
Figures 2(e)-(f)).

4) Hand segmentation: This step focuses on the subtrac-
tion of the background from the rectangular bounding boxes
generated in the previous step, employing Otsu’s threshold-
ing method [20]. This process is critical, since it generates
bounding boxes including only the target objects to be fed to
the classification stage, which constitute the so-called proposal
windows. An example of Otsu’s thresholding is shown in
Figure 2(g), with pixels not satisfying the optimal threshold
changed to zero.

5) Peak detection: The number of proposal windows pro-
vided to the classification stage is determined using peak
detection. Specifically, a peak is defined as the point where
the hand bounding box upper y-coordinate remains “stable”
for more than one frame, and only proposal windows of two
adjacent frames with upper y-coordinates Euclidean distance
less than 8 are marked as a peak (see Figure 2(h)). The peak
frames for each letter tend to be characterized by limited
motion, which is estimated to be less than 8 pixels between
hand position transitions. This peak is commonly the point
where the handshape configuration most closely resembles the
canonical handshape and, by extension, the letter sign. Note
that, in case of multiple tracks of hand bounding boxes, this
step is individually applied to each track.

B. Classification stage

Following the proposal window selection, a number of
rectangular regions are returned as hand candidates, excluding
of course any face bounding boxes. To yield the static hand
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gesture recognition, a CNN is employed, adopting the AlexNet
architecture [21] after appropriate modification and training.
It should be noted that the developed CNN is multi-class,
corresponding to the 24 static letters of the ASL alphabet,
excluding “J” and “K” because they are formed by hand
movements, and including a “no hand” class. In more detail,
each proposal window is resized to the fixed size of the
CNN input layer (227× 227 pixels) and fed to it in order
to predict its label. As already mentioned, the CNN follows
the AlexNet architecture [21], based on its wide adoption by
the computer vision community and high accuracy achieved
on the ImageNet benchmark [22]. The network consists of
five convolutional and three fully-connected layers, and it is
pretrained on the ImageNet corpus. The only modification
made is on its final fully-connected layer, so that it has the
same size as the number of classes of interest (25).

In the literature, in the case of CNNs, non-linearities have
been mainly deployed through activation functions and pooling
operations, with limited only attention paid to the filtering
mechanics. Here, motivated by the non-linear nature of image
data and inspired by recent works [18], [19], we consider an
alternative convolutional operation that outputs the feature map
based on a non-linear quadratic function. More precisely, our
model follows the regular CNN layer pipeline (convolution,
pooling, activation function, etc.). However, instead of per-
forming the traditional linear operation

F (x) = w>x+ b , (1)

with x being the input vector, w representing the weight or
filter vector, and b denoting the bias value, we employ the
non-linear quadratic based scheme

F (x) = w>(x� x) + b , (2)

where � denotes element-wise vector product. The rationale
lies on the quadratic function curvature that improves net-
work learning by representing non-linear complex functional
mappings from inputs to outputs, while its gradient remains
smooth, depending on x during backpropagation as

∂F

∂x
= 2w>x . (3)

To further enhance the sparsity and efficiency of the acti-
vations, we replace the rectified linear units (ReLU), which
often result in weight updates that cause inactive neurons, with
LeakyReLU ones.

III. EXPERIMENTS

A. Video datasets

Our experiments are conducted on three publicly available
databases: the RWTH German fingerspelling dataset [23], the
National Center for Sign Language and Gesture Resources
(NCSLGR) handshapes corpus [24], and the American Sign
Language Lexicon Video Dataset (ASLLVD) [25].

The RWTH German Fingerspelling dataset comprises video
sequences with fingerspelling letters of the German sign
language, including among others the signs “A” to “Z”, which

(a) (b) (c)

Fig. 3. Hand detection and letter classification for (a) the RWTH German
fingerspelling database, (b) the NCSLGR corpus, and (c) the ASLLVD dataset.

are identical to the corresponding letters of ASL, except for
letter “T” that is different. The data are organized in sets
of 44 sequences for every letter, recorded by 20 different
users. Videos are available at a 30 Hz frame rate and a frame
resolution of 352×288 pixels. The body parts, like hands and
face, for 4,416 image frames, corresponding to 44 videos
for each letter, apart from letters “J” and “K” which include
motion, were manually annotated as part of this work.

The NCSLGR handshapes corpus consists of 87 ASL videos
including both letters and numbers, generated and linguis-
tically labeled at Boston University. The database consists
of single-signer videos for every letter, showing the signing
from three front cameras including the face region, and a
hand closeup view containing only hands. Image frames are
available at a resolution of 312×324 pixels. A manual ground-
truth hand and face annotation for 1,168 frames recorded by
the front-view cameras arising from 72 videos was conducted
for the purposes of this work.

The American Sign Language Lexicon Video Dataset
(ASLLVD) is a large dataset of video sequences of almost
3000 isolated ASL signs produced by 6 native signers of
ASL for a total of almost 9,800 tokens, including number
signs, fingerspelled signs, and lexical ones. Signing is captured
simultaneously by four cameras, providing a side view, two
frontal views, and a face closeup view. For the side view, the
first frontal view, and the face closeup, videos are available
at 60 Hz and 640×480-pixel resolution. Additionally, for the
second frontal view, video is captured at 30 Hz, non-interlaced,
with a frame resolution of 1600×1200 pixels. Hand and face
ground-truth annotations of every frame are publicly available.
Frontal-view camera recordings and 30% of all image frames
corresponding to 3,700 images are employed in this work.

B. Algorithm implementation details

The evaluation of the algorithm was run on a CPU ar-
chitecture (i7-6700HQ, 2.60 GHz processor), whereas CNN
training was carried out on a Nvidia GTX 1050 Ti GPU. Both
training and evaluation were implemented within the Matlab
environment.

Network training employed stochastic gradient descent with
momentum with an initial learning rate of 0.004 (decreasing
by a factor of 0.5), performing 60 complete passes over the
data. The mean squared error loss function and a mini-batch
size of 128 images are used.
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Fig. 4. Boxplot for comparing the detection performance of the proposed
method against two alternatives in both multi-signer (MS) and signer-
independent (SI) cases on all three evaluation datasets in terms of mean IoU.
The average number of proposal windows per frame is listed in green, the
mean IoU in red, and the running time is shown inside parentheses.

C. Experimental setup

We follow two experimental paradigms in our evaluation
concerning the training and test set split, as detailed next.

1) Multi-signer: In this case, we fine-tuned the pretrained
CNN of Section II-B on data from all three corpora of
Section III-A, using the parameter setup of Section III-B.
Specifically, for training we utilized 2,279 handshapes from
the RWTH German fingerspelling dataset, 606 samples from
the NCSLGR database, and 2,188 images of ASLLVD, cor-
responding to 50% of their available videos (containing man-
ually extracted handshapes). For testing, sets were generated
after preprocessing the remaining videos with the pipeline of
Section II-A, resulting in 2,137 frames from the first, 562 from
the second, and 1,512 from the third database.

2) Signer-independent: To validate the generalization abil-
ity of our model, we trained the CNN of Section II-B on two
datasets at a time (thus resulting in three models), and tested
on 30% of all videos of the third database each time (after
preprocessing). Specifically, we tested the respective CNN on
1,367 image frames from the RWTH German dataset, 350
from the NCSLGR database, and 1,110 from ASLLVD.

D. Detection efficiency

The performance of the proposed multi-class scheme, in-
cluding the preprocessing phase and the nonlinear model,
was initially evaluated in terms of detection efficiency and
compared against two well-established alternatives: the R-
CNN approach [26], which was considered with five CNN
layers comprised of linear convolutions and ReLU activations,
but employing selective search for proposal generation [27],
as well as its efficient implementation known as the Faster
R-CNN [28] that is a region proposal network sharing con-
volutional layers with the Fast R-CNN [29]. For comparison
purposes, both models were provided with the frames extracted
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Fig. 5. Performance comparison of the proposed method against three
alternatives in both multi-signer (MS) and signer-independent (SI) cases on
all three evaluation datasets in terms of classification accuracy (listed in red).

by the peak detection step including only canonical hand-
shapes of the letter signs. Regarding the detection efficiency,
the aforementioned models were compared in terms of the
mean Intersection-over-Union (mean IoU) [30], which is a
standard metric to measure the overlap ratio between ground-
truth and predicted bounding boxes.

As can be readily observed in Figure 4, the proposed
method reaches the highest IoUs on all three datasets and
under both experimental paradigms, attaining a small inter-
quartile range (spread) of values. This is primarily due to
the smaller number of proposal windows that reduces the risk
of false detections, while not missing hand candidate regions
due to the robust design of the first stage of the algorithm.
Indeed, on the average, the proposed algorithm yields 1.34
proposals per frame, versus 1,758 of the R-CNN and 87.9 of
the Faster-RCNN. As a result, the R-CNN runs significantly
slower than the proposed by approximately 92 times, while the
Faster R-CNN manages to reduce the latter, remaining though
still at 2.04 times slower. Note that in its current Matlab-
based implementation (see Section III-B), the proposed model
(including both its preprocessing and classification stages) runs
at approximately 0.28 sec per frame.

E. Classification accuracy

Further, the classification accuracy of the proposed approach
was evaluated against two variations based on the preprocess-
ing pipeline for hand segmentation and a CNN classifier with
a linear convolutional operation and a ReLU layer [4] (“CNN
& ReLU”), as well as a ResNet-50 classifier [31] (“ResNet”),
using the training options described in Section III-B. More-
over, it was also compared against a “HOG+SVM” system,
employing a HOG feature extractor (64-dimensional features)
and an SVM classifier that was provided with frames including
only canonical handshapes.

It can be readily observed from Figure 5 that the proposed
model turns out superior to the considered alternatives in
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both multi-signer and signer-independent cases and on all
evaluation datasets. This can be attributed to the non-linear op-
erations of (2) and the effective activations of the LeakyReLU
layer, yielding accuracies ranging within 99.14% and 99.64%
for the three sets in the multi-signer case and between 73.92%
and 79.23% in the signer-independent case. It is worth noting
that the largest absolute accuracy improvements occur in
the signer-independent case. Specifically, such improvements
range between 9.15% and 16.36% against the “CNN & ReLU”
system across the three datasets, between 8.51% and 14.71%
compared to the “ResNet”, and even larger, between 14.18%
and 18.33%, against the “HOG+SVM” system.

IV. CONCLUSIONS

This paper presents a hybrid approach to effectively solve
the problem of automatic detection and classification of static
ASL fingerspelled alphabet signs in video data. The method
combines deep learning with traditional image processing
methods, assuming visibility of the face to guide skin-tone
based segmentation, assisted by motion-based tracking of
the segmented skin regions. The substitution of the linear
convolutional operation by a quadratic function in the CNN
architecture is shown to improve performance significantly,
especially in the mismatched signer-independent case, show-
casing its better generalization ability.
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[9] L. Quesada, G. López, and L. Guerrero, “Automatic recognition of the
American sign language fingerspelling alphabet to assist people living
with speech or hearing impairments,” Journal of Ambient Intelligence
and Humanized Computing, vol. 8, no. 4, pp. 625–635, 2017.

[10] C. S. Weerasekera, M. H. Jaward, and N. Kamrani, “Robust ASL
fingerspelling recognition using local binary patterns and geometric fea-
tures,” in Proc. International Conference on Digital Image Computing:
Techniques and Applications (DICTA), 2013.

[11] B. Shi and K. Livescu, “Multitask training with unlabeled data for
end-to-end sign language fingerspelling recognition,” in Proc. IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU),
2017, pp. 389–396.

[12] T. Kim, J. Keane, W. Wang, H. Tang, J. Riggle, G. Shakhnarovich,
D. Brentari, and K. Livescu, “Lexicon-free fingerspelling recognition
from video: Data, models, and signer adaptation,” Computer Speech
and Language, vol. 46, pp. 209–232, 2017.

[13] K. Papadimitriou and G. Potamianos, “A hybrid approach to hand
detection and type classification in upper-body videos,” in Proc.
European Workshop on Visual Information Processing (EUVIP), 2018.

[14] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2001.

[15] K. B. Shaik, P. Ganesan, V. Kalist, B. S. Sathish, and J. M. M. Jenitha,
“Comparative study of skin color detection and segmentation in HSV
and YCbCr color space,” Procedia Computer Science, vol. 57, pp. 41–
48, 2015.

[16] J.-M. Jeong, T.-S. Yoon, and J.-B. Park, “Kalman filter based multiple
objects detection-tracking algorithm robust to occlusion,” in Proc. SICE
Annual Conference (SICE), 2014, pp. 941–946.

[17] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp.
62–66, 1979.

[18] N. Tsapanos, A. Tefas, N. Nikolaidis, and I. Pitas, “Neurons with
paraboloid decision boundaries for improved neural network classifica-
tion performance,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 30, no. 1, pp. 284–294, 2019.

[19] G. Zoumpourlis, A. Doumanoglou, N. Vretos, and P. Daras, “Non-linear
convolution filters for CNN-based learning,” in Proc. IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 4771–4779.

[20] P.-s. Liao, T.-s. Chen, and P.-c. Chung, “A fast algorithm for multilevel
thresholding,” Journal of Information Science and Engineering, vol. 17,
pp. 713–727, 2001.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS) 25, 2012, pp. 1097–1105.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[23] P. Dreuw, T. Deselaers, D. Keysers, and H. Ney, “Modeling image
variability in appearance-based gesture recognition,” in Proc. ECCV
Workshop on Statistical Methods in Multi-Image and Video Processing
(ECCV-SMVP), 2006, pp. 7–18.

[24] C. Neidle, “SignStream: A database tool for research on visual-gestural
language,” Sign Language and Linguistics, vol. 4, no. 1, pp. 203–214,
2001.

[25] V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan, A. Thangali,
H. Wang, and Q. Yuan, “Large Lexicon Project: American Sign
Language video corpus and sign language indexing/retrieval algorithms,”
in Proc. LREC Workshop on the Representation and Processing of Sign
Languages: Corpora and Sign Language Technologies, 2010, pp. 11–14.

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based
convolutional networks for accurate object detection and segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
38, no. 1, pp. 142–158, 2016.

[27] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders, “Selective search for object recognition,” International
Journal of Computer Vision, vol. 104, no. 2, pp. 154–171, 2013.

[28] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems (NIPS) 28, 2015, pp. 91–99.

[29] R. Girshick, “Fast R-CNN,” in Proc. IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 1440–1448.

[30] M. A. Rahman and Y. Wang, “Optimizing Intersection-Over-Union in
deep neural networks for image segmentation,” in Proc. International
Symposium on Visual Computing (ISVC), 2016, pp. 234–244.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

2019 27th European Signal Processing Conference (EUSIPCO)


