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Abstract—This work compares a range of machine learning
methods applied to the problem of detecting right whales from
autonomous surface vehicles (ASV). Maximising detection accu-
racy is vital as is minimising processing requirements given the
limitations of an ASV. This leads to an examination of the trade-
off between accuracy and processing requirements. Three broad
types of machine learning methods are explored - convolution
neural network (CNNs), time-domain methods and feature-based
methods. CNNs are found to give best performance in terms of
both detection accuracy and processing requirements. These were
also tolerant to downsampling down to 1kHz which gave a slight
improvement in accuracy as well as a significant reduction in
processing time. This we attribute to the bandwidth of right
whale calls which is around 250Hz and so downsampling is able
to capture the sounds fully as well as removing unwanted noisy
spectral regions.

Index Terms—Cetacean detection, CNNs, machine learning,
autonomous surface vehicles

I. INTRODUCTION

This work is concerned with investigating and comparing
methods for detecting marine mammals from autonomous
surface vehicles (ASVs) where processing power and commu-
nications are limited. Accurate detection of marine mammals
is important for population monitoring and for mitigation as
many species are endangered and protected by environmental
laws. We consider the latter of these in the context of detecting
North Atlantic right whales (Eubalaena glacialis) in the vicinity
of potential harmful subsea activities. Detecting their presence
before they enter a mitigation zone both protects the animal
and avoids the shutdown of costly subsea operations.

Detection has traditionally been made by human observers
on-board ships, but more recently ASVs have been used [1].
Using an ASV limits the detection to using just an acoustic
signal, as opposed to visual with a human observer, however it
provides a cheaper and more accessible alternative. The ASV
employs passive acoustic monitoring (PAM) which processes
acoustic signals from a hydrophone to determine if marine
mammals are present. This presents a number of challenges that
include performing audio analysis and detection with limited
processing power whilst maximising detection accuracy. This

work investigates a range of methods for right whale detection
and considers both their accuracy and processing requirements.

A broad range of machine learning methods have been
applied to cetacean detection in recent years. For example,
methods such as vector quantisation and dynamic time warping
have been effective in detecting blue and fin whales from their
frequency contours extracted from spectrograms [2]. Hidden
Markov models (HMMs) have also been effective at recognising
low frequency whale sounds using spectrogram features [3].
Comparisons have also been made between between artificial
neural networks (ANNs) and spectrogram correlation for right
whale detection [4]. Further to the use of ANNs, support
vector machines (SVM) have also been applied effectively to
odontocete classification [5]. SVMs have also been compared
against Gaussian mixture models for classification of three
types of odontocetes [6]. More recently, a convolution neural
network (CNN) was applied to right whale classification [7].

The aim of this work is to apply a range of machine learning
methods to the problem of right whale detection. Specifically,
we evaluate techniques that include CNN, time-domain and
feature-domain methods of detection. In addition to accuracy,
we also measure processing requirements for detection and
consider their suitability for deployment on an ASV. Training
times are considered unimportant as this is carried out offline.

The remainder of the paper is organised as follows. Section
II describes the sounds produced by right whales in both
relatively clean and noisy conditions. Issues of detection from
an ASV are highlighted in Section III. Sections IV, V and VI
present the CNN, time-domain and feature-domain methods
of detection that will be investigated. Finally, detection results
are presented in Section VII.

II. CHARACTERISTICS OF RIGHT WHALES

Right whales are one of the most endangered marine
mammals k [8] with a high possibly of extinction due to
human activity within areas where they migrate, with as few
as 350 individuals remaining. Right whale calls have been well
documented and they can make a variety of vocalizations
[9]. However, this work focuses on their most commonly
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Fig. 1. Example spectrograms showing up-sweep calls from right whales for:
top row, high SNR; middle row, medium SNR; bottom row, low SNR.

documented sound, an up-sweep tone from approximately 60Hz
to 250Hz typically lasting 1 second. Examples of this are shown
in Figure 1 which illustrates calls at different signal-to-noise
ratios (SNRs) caused by marine noise. Calls, however, are
not always consistent with one another and can often vary
in duration and frequency range, and by time of day, season
and age of the animal [10]. Right whale vocalization patterns
are also extremely variable with periods of silence regularly
spanning many hours [11].

Calls can be difficult to hear, or visualise in spectrograms,
as these low frequency bands are often congested with
artificial sounds such as ship noise, drilling, piling, seismic
exploration, or interference from other marine mammals [12].
These overlapping frequencies can cause large amounts of
background noise in the signal making detection extremely
difficult. Figure 1 shows three distinct levels of up-sweep
visualisation. The top spectrograms show strong up-sweeps
with little interference from background noise. The middle row
shows strong calls amongst high levels of background noise.
The bottom spectrograms show the most challenging scenario
with weak calls embedded in large amounts of background
noise, giving little indication of mammal presence.

Current methods of collecting cetacean data involve towing
a hydrophone array from a ship and using trained observers to
listen and watch the water for mammal activity. For right
whale detection, their low frequency calls allow sampling
frequencies down to 2kHz to be used, although typically much

higher sampling frequencies are used initially before being
downsampled.

III. DETECTION FROM AUTONOMOUS SURFACE VEHICLES

Deploying ASVs for marine mammal detection is much
cheaper than employing human observers on-board ships, and
allows surveys to last several months [1]. For the task of
mitigation monitoring a positive detection result needs to be
communicated immediately so that mitigation measures can
be put in place to protect the animal. This differs from, for
example, population monitoring where data is stored on an ASV
and then transferred and processed at a later time. Two potential
ASV architectures can be considered for mitigation monitoring
and can be termed ‘thick’ and ‘thin’. The ‘thick’ ASV samples
the acoustic data from the hydrophone and inputs this into an on-
board detection algorithm with positive detections transmitted
for mitigation alert. The ‘thin’ ASV performs only the sampling
on-board and transmits the data remotely for detection process-
ing and mitigation alerts. Providing communication beyond
a few miles, where a wireless modem could be employed,
requires a satellite link. For the ‘thin’ ASV, the communication
costs are generally prohibitive as a permanent satellite link is
necessary. Furthermore, transmission would likely exceed the
2.4kbps limit for the Iridium network and thereby require a
connection to the Inmarsat network which is substantially more
expensive and has much higher power consumption (100 W, as
opposed to 2.5 W). Based on these limitations of the ‘thin’ ASV
architecture, we consider only the ‘thick’ ASV and explore
how processing requirements can be minimised. To reduce
false alarms (and the potentially large resulting costs) with the
‘thick’ ASV architecture, the segment of audio associated with
a detection can be transmitted for a human to check, with the
frequency of occurrence of this unlikely to be prohibitive.

IV. CNN-BASED DETECTION

CNN-based detection is based on first extracting a time-
frequency spectral feature from the audio signal and then
inputting this into a CNN to predict presence of a whale. The
time-frequency feature, X, is created using a sliding window
that transforms short-duration frames of audio into log power
spectral vectors. Specifically, an N -point frame of time-domain
samples is extracted from the audio, Hamming windowed
and a Fourier transform computed. The upper N /2 frequency
points are discarded and the remaining points logged. Analysis
windows are advanced by S samples to compute each new
spectral vector. For an audio recording comprising T samples,
a total of dT−N+1

S e spectral vectors are computed. This gives
the total number of time-frequency points, D, as

D = dT −N + 1

S
e × N

2
(1)

Within each time-frequency matrix, normalisation is applied
so all elements, x(t, f), are in the range 0 to 1.

A number of CNN architectures were considered with highest
accuracy found using three convolutional layers. Each of these
is followed by a max pooling layer followed by a final dense
layer. The size of the input varies according to the time
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and frequency resolution of the feature extraction and this
is investigated in Section VII. In all convolutional layers, 3×3
filters are applied with zero-padding at the edges, with 32, 64
and 128 in each layer, respectively, with a ReLU activation
function. Again, other filter sizes and numbers of filters in
each layer were tested, with highest accuracy attained with this
configuration. The final dense layer uses a sigmoid activation
function to give a probability of whale detection.

V. TIME-DOMAIN DETECTION

An alternative approach is to use the audio signal directly
to form a time series classification (TSC) problem. The vast
majority of TSC algorithms operate on time domain data as,
until recently, the consensus was that ‘simple nearest neighbour
classification is very difficult to beat’ [13]. As such, much
emphasis has been placed on developing approaches for solving
problems in the time-domain using alternative elastic distance
measures with nearest neighbour classifiers [14]–[16]. The
most popular of these approaches is dynamic time warping
(DTW) with a warping window set through cross-validation
and 1-nearest neighbour (DTW 1NN). While it has been shown
that ensembling different elastic nearest neighbour classifiers
can be significantly more accurate [17], combining such lazy
classifiers increases test classification run-time. With a large
amount of training data, necessary for capturing the range
of whale signals and background noises, detection processing
times are likely prohibitive for real-time deployment on an
ASV, so for this application we use DTW 1NN as a benchmark
for time-domain approaches.

VI. FEATURE-BASED DETECTION

Feature-based methods operate by transforming the time-
domain signals into an alternative representation where discrimi-
natory information is more easily detected. A recent comparison
of approaches [18] demonstrated that best performance is
obtained by combining ensemble classifiers built over various
representations of a problem to produce combined predictions
from a meta-ensemble [19]. However, given the processing
limitations in implementing detection on ASVs, this would not
be practical but suitable constituent transformation-based ap-
proaches may produce fast, accurate results. In particular, three
such constituents are considered: 1) time series forest which is
built on summary features from phase-dependent intervals [20];
2) shapelet transform which is a heterogeneous ensemble
using data transformed by similarity to phase-independent
discriminatory subsequences [21]; 3) RISE, random interval
spectral ensemble which is a forest-based ensemble classifier
that builds constituents using features extracted from the auto-
correlation and power spectral domains [19].

VII. EXPERIMENTAL RESULTS

The aim of these experiments is to explore the accuracy of the
detection methods and to consider these in respect of the trade-
off against processing requirements. The first test compares the
techniques as the sampling frequency is reduced and shows how
processing time is affected. Secondly, parameters of detection

methods are adjusted to vary the amount of processing required
and to see its effect on accuracy.

Tests use part of the Marinexplore and Cornell University
Whale Detection Challenge1 database of North Atlantic right
whale up-calls. The audio is segmented into 2 second duration
blocks with each labelled manually as containing a right whale
or not. Specifically, we use 10,934 audio blocks for training,
1,122 for validation and 1,962 for testing and these are balanced
to contain equal numbers of segments with and without whales
present.

A. Effect of sampling frequency

These tests examine the effect that reducing the sampling
frequency has on detection accuracy and on processing time
and aim to identify methods with a good compromise that can
be taken forward for further consideration. Tests are performed
at the original recording sampling frequency of 2kHz and
then downsampled to 1kHz and then to 500Hz. Figure 2
shows detection accuracy and processing time for the different
sampling frequencies using the CNN, shapelet transform, time
series forest, DTW and RISE detection methods. Highest
accuracy is obtained with the CNN at all sampling frequencies
– this configuration used a window width of 64ms with 50%
frame overlap. With the CNN, sampling frequency has some
effect on detection accuracy with a slight peak at 1kHz. Right
whale calls typically rise to around 250Hz in frequency (see
Figure 1) and so reducing the sampling frequency from 2kHz
to 1kHz serves to remove the 500-1000Hz band which contains
no whale tones. This does not degrade performance and the
small improvement we attribute to the removal of noise present
in this band which may lead to false alarms. Downsampling
further to 500Hz leaves the remaining signal bandwidth at
0-250Hz which is very close to the upper tone frequencies
in right whale calls which may cause the small reduction in
accuracy. Considering now the feature-domain methods, these
perform worse with highest accuracy achieved by the shapelet
transform. Interestingly, these methods tend to perform better
at lower sampling frequencies. Worst performance is with the
DTW time-domain method.

Given that an aim of this work is to deploy detection on
low processing power devices situated on an ASV, we also
measured processing times for the methods when run on a
CPU. Figure 2 shows the processing time for the three sampling
frequencies. Results are shown only for the CNN which is able
to process each 2 second block in between 2-7ms which is
substantially faster than real-time. These tests were performed
on a Intel Core i7-870 CPU which is likely to be much faster
than processors deployed on an ASV. The feature-domain and
time-domain methods were found to be much slower (ranging
from approximately 1 second for the shapelet transform to 7
seconds for DTW) making them unsuitable for deployment.
Also shown on Figure 2 is the number of time-frequency
points in the CNN input feature, which is seen to be linearly
proportional to the processing time.

1https://www.kaggle.com/c/whale-detection-challenge/data
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(a) Detection accuracy across different sampling frequencies

(b) Processing time and number of time-frequency points across different
sampling frequencies

Fig. 2. Effect of sampling frequency on a) detection accuracy and b) processing
time and number of time-frequency points.

To investigate false alarms and missed detections, Figure
3 shows spectrograms of two false negatives and two false
positives, produced by the CNN operating at 2kHz. These are
typical of both types of error and for the false negatives show
much background noise to be present that has largely masked
the right whale call. False positives are also more likely in
high noise conditions, where the characteristic of noise creates
spectral energies similar to the right whale call leading to the
false alarms.

Given the higher accuracy and substantially faster processing
time found with the CNN, we take this forward for further
analysis and optimisation.

B. Analysis and optimisation of CNN detection

Tests now concentrate on the CNN method of detection and
examine further the trade-off between accuracy and processing
time by examining the time and frequency resolution of the
input feature. Frame widths between 256ms and 16ms are
considered first with a fixed 50% overlap of frames which
gives a time resolution, ∆t, between 128ms and 8ms. In terms

(a) False negatives

(b) False positives

Fig. 3. Example spectrograms that have been classified as a) false negative
or b) false positive.

TABLE I
DETECTION ACCURACY AND NUMBER OF POINTS FOR VARYING TIME AND

FREQUENCY RESOLUTION FEATURES WITH 50% FRAME OVERLAP.

∆t 128ms 64ms 32ms 16ms 8ms
2kHz ∆f 3.9Hz 7.8Hz 15.6Hz 31.3Hz 62.5Hz
2kHz D 3584 3840 4032 3968 3984
2kHz Accuracy 91.4% 92.1% 91.6% 90.2% 89.9%
1kHz ∆f 3.9Hz 7.8Hz 15.6Hz 31.3Hz 62.5 Hz
1kHz D 1792 1920 1952 1984 1992
1kHz Accuracy 91.2% 92.0% 91.6% 90.6% 90.0%

of the frequency resolution, ∆f , this varies between 3.9Hz and
62.5Hz, depending on the window size and sampling frequency.
The number of time-frequency points, D, for each configuration
is computed using (1). For each time resolution, Table I shows
the resulting frequency resolution, number of time-frequency
points and detection accuracy, for sampling frequencies of
2kHz and 1kHz - we chose not to pursue the 500Hz system
as accuracy had reduced slightly. Highest accuracy for both
sampling frequencies is found with the 64ms-7.8Hz time-
frequency resolution, with 92.1% for 2kHz and 92.0% for
1kHz. Considering the number of points, and hence processing
time, the 1kHz system requires half the computations and gives
almost equal performance to the 2kHz system.

The tests in Table I were performed with 50% frame overlap
which means that frequency resolution deteriorates as time
resolution improves. We now consider these independently
by allowing the frame overlap, S, to vary while keeping
the frame width fixed. Specifically, we consider two fixed
frame widths to give high and low frequency resolutions of
∆f={3.9Hz, 15.6Hz} and adjust the frame slide to give varying
time resolutions, ∆t, from 64ms to 8ms. The resulting accuracy
and number of time-frequency points are shown in Table II
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TABLE II
DETECTION ACCURACY AND NUMBER OF POINTS FOR VARYING TIME

RESOLUTIONS AND FREQUENCY RESOLUTIONS OF 15.6HZ AND 3.9HZ.

∆t 64ms 32ms 16ms 8ms
2kHz ∆f 15.6Hz 15.6Hz 15.6Hz 15.6Hz
2kHz D 1984 3904 7808 15552
2kHz Accuracy 91.1% 91.6% 91.0% 90.0%
2kHz ∆f 3.9Hz 3.9Hz 3.9Hz -
2kHz D 7168 14080 28160 -
2kHz Accuracy 92.1% 92.3% 91.3% -
1kHz ∆f 15.6Hz 15.6Hz 15.6Hz 15.6Hz
1kHz D 992 1952 3904 7776
1kHz Accuracy 91.0% 91.6% 91.5% 91.0%
1kHz ∆f 3.9Hz 3.9Hz 3.9Hz 3.9Hz
1kHz D 3584 7040 14080 28032
1kHz Accuracy 92.3% 92.5% 91.6% 91.0%

for 2kHz and 1kHz sampling frequencies.
For both frequency resolutions and both sampling frequencies

the time resolution has relatively little effect between 64ms and
16ms, with highest accuracy at 32ms. In terms of frequency
resolution, the finer resolution gives higher accuracy across
all configurations tested, although this comes at the cost of
increased processing time. For example, highest performance
of 92.5%, with 1kHz sampling frequency, 3.9Hz frequency
resolution and 32ms time resolution used 7,040 points. This
could be reduced to 1,952 points (corresponding to a processing
time three times faster) by using a wider frequency resolution
but with a reduction in accuracy to 91.6%.

VIII. CONCLUSION

A range of time-series, feature-domain and CNN methods
have been applied to the detection of right whales with
best performance, in terms of both accuracy and processing
time, given by the CNN. Downsampling the audio leaves
accuracy almost unchanged but gives a substantial reduction in
processing time which is advantageous for ASVs. Considering
time and frequency resolutions reveals that a wide resolution of
32ms gives good accuracy whilst higher frequency resolutions
are better, albeit at increased processing cost.

Analysis of errors, both false negatives and false positives,
has shown these to occur most often in low SNRs. Methods
such as prefiltering to remove noise prior to detection or the
use of more noisy training data may alleviate some of these
errors. We have set the decision boundary at a probability
threshold of 0.5 which gives close to an equal error rate. This
could be adjusted to bias detections and it may be useful to
reduce false alarms as whales typically exhibit long periods
of calls which makes it unlikely to miss all of them at times
when mitigation alerts are necessary.
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