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Abstract—Nowadays, data are collected everywhere from
searches on Google to posts on social media. Thus, the era of big
data is started. Among many feasible sources, Wireless Sensor
Network (WSN) becomes one of the vibrant big data sources
where a huge volume of data is generated from various sensor
nodes in large-scale networks. Compared to traditional networks,
WSN faces serious challenges especially in data management
and conserving sensor energies. In this work, we propose a
novel two phases big data processing mechanism, called ON-
IN: on-node and in-node (between nodes). In the first phase, we
introduce the Newton’s forward difference method to reduce the
amount of data generated at each sensor node. Meanwhile, in the
second phase we perform a clustering technique, i.e. PKmeans
(Pattern-Kmeans) algorithm, and aim to reduce the redundancy
among data generated by neighboring nodes. Through both
simulations and experiments on real telosB motes, we evaluated
the efficiency of our proposed mechanism in terms of reducing
data transmission and conserving sensor energies, compared to
other existing techniques.

Index Terms—Wireless sensor networks, Newton forward dif-
ference method, PKmeans, telosB mote, energy conservation.

I. INTRODUCTION

THE world has witnessed the bursting effects of WSNs
as a decisive element in any monitoring process whether

in agriculture, medical care, environment or other fields. The
large spread and usage of such networks is mainly because of
three reasons: their low-cost implementation, their flexibility,
and their precision in yielding accurate data. Unfortunately,
big data acquisition and transmission energy cost are two
major problems that must be handled in order to maximize
the lifetime of a sensor. Therefore, data reduction techniques
are becoming a fundamental operation to reduce the amount
of transmitted data and consequently minimize the energy
consumption.

Indeed, the reduction techniques can be either applied at
the sensor level itself, e.g. on-node [1]–[5], or at intermediate
nodes, e.g. in-node [6]–[9], along the path to the sink. On one
hand, the authors of [1] propose an on-node mechanism using
the concept of time series analysis in order to analyze the
variations in sensed data, so as it can interpreted based on an
autoregressive model of order p. On the other hand, the authors
of [9] propose an in-node mechanism called Semi Distributed
Heuristic Energy efficient Aggregation Tree (SDHEAT) for
WSN. Mainly, SDHEAT is based on three concepts: heuristic

tree formation, sensing priority and distributed nature. Finally,
the authors of [10] a data reduction technique for both
sensor and aggregator levels. First, they propose an on-node
aggregation method to remove redundant data collected by the
sensor. Then, an in-node data reduction called prefix frequency
filtering (PFF) is introduced at the cluster-head (CH) level.
PFF allows CHs to find similarities among data collected
by neighboring nodes in the same cluster using a Jaccard
similarity function.

In this paper, we propose a two phases data reduction
mechanism dedicated to periodic large-scale sensor network
applications. Our mechanism works on two phases: on-node
and in-node. The final goal of our mechanism is to reduce data
transmission, whether collected by the sensors or transmitted
by intermediate nodes, e.g. cluster-head (CH).

The rest of paper is organized as follows. In Section II,
we define terminologies and network design. Sections III and
IV detail the on-node and the in-node models, respectively.
Simulations and experiments are presented in Section V.
Section VI concludes the paper.

II. NETWORK DESIGN AND PRELIMINARIES

A. Network Design

For energy conservation and scalability reasons, we are
interested in the cluster-based architecture for WSN, where
the whole network is divided into subareas termed as clusters
within which a cluster-head is elected. The CH has a mission
to gather data from its subordinate cluster members and sends
them to the sink node. Fig. 1 presents the cluster-based
network design considered in our study. Thus, our proposed
mechanism consists of two phases: on-node and in-node. The
on-node operation is performed by the sensors while the in-
node is applied at the CH level. After data being periodically
collected, the sensor nodes use a data prediction model in
order to reduce the data size sent to its corresponding CH.
Upon receiving the prediction model for all its sensors, the
CH uses a clustering model in order to prevent sending similar
prediction data generating by neighboring node to the sink
node. Finally, the sink receives the subset of prediction data
and try to recover data of the whole sensors.
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Fig. 1. A cluster-based network architecture

B. Problem Description and Notations

WSN is represented as a connected graph G =(N ,E), where
N = {N1, N2, . . . , Nn} is a set of n (sensor) nodes and E is a
set of edges. A sensor node collects data over a period of time
(P ) and subsequently transmits all the sensed data to the next
hierarchy level (e.g. CH). Sensor networks supporting these
kind of applications are known as periodic wireless sensor
networks (PWSNs). Each period P is divided into a finite
number of F time slots as follows: P = [s1, s2, . . . , sF ]. At
each slot sj , each sensor node Ni captures a new data value
vij , and eventually forms a vector of sensed data during the
period P as follows: Vi = [vi1 , vi2 , . . . , viF ]. Mostly, each
data vector Vi may contain redundant data (or similar data),
especially when the monitored conditions vary slowly or when
the frequency of sensing is high or the time slots are short.

III. SENSOR LEVEL: ON-NODE PREDICTION MODEL

In PWSN, the huge amount of collected data and its
corresponding huge number of transmitted packets lead to
two sensor problems: high level of energy consumption and
sending unneeded/useless data to the sink. The first phase of
our mechanism, e.g. on-node, is applied at the sensor level
and aims to prevent sending similar data points sensed at each
period P , based on a prediction model using the Newton’s
forward difference method.

A. Newton’s Forward Difference Method

In the mathematical field of numerical analysis, a Newton
forward difference is an interpolation polynomial for a given
set of data points. It aims to estimate the value of a function
(yi = f(xi)) for any intermediate value of the independent
variables (xi).

Definition 1: Forward Differences. Given a set of k +
1 data points, {(x0, y0), (x1, y1), . . . , (xj , yj), . . . , (xk, yk)}.
The differences y1 − y0, y2 − y1, . . . , yk − yk−1 denoted by
∆y0, ∆y1, . . . , ∆yk−1 respectively are called the first forward
differences. Thus the first forward differences are defined by:

∆yj = yj+1 − yj , where j ∈ [0, k − 1] (1)

Based on the above definition, we typically set up the
forward difference table as:

x y ∆y ∆2y . . . ∆c−1y ∆cy
x0 y0 ∆y0 ∆2y0 . . . ∆c−1y0

∆cy0

x1 y1 ∆y1 ∆2y1x2 y2 ∆y2 ...
∆c−1y1

...
...

...
∆2yk−3 ...

xk−2 yk−2 ∆yk−2 ∆2yk−2xk−1 yk−1 ∆yk−1xk yk

Then, in order to find y-value of a new x-value, we use the
Newton’s Gregory forward interpolation formula:

y = f(x0 + hu) = y0 + u∆y0 +
u (u− 1)

2!
∆2y0 + . . .

+
u (u− 1) (u− 2) . . . (u− c + 1)

c!
∆cy0 (2)

This formula is particularly useful for interpolating the
values of f(x) near the beginning of the set of given values.
h is called the interval of difference (h = x1 − x0) and
u = (x − x0)/h, where x is the value we want to find its
corresponding y.

B. On-Node Prediction Algorithm

The data collected by the sensor nodes during a period, i.e.
Vi, are mainly redundant. Thus, in order to prevent sending
redundant data to the CH, we propose to integrate the New-
ton’s forward difference method into the sensor processing to
reduce the data transmission to the CH. The idea is to find the
coefficients of Newton Gregory equation then send them to the
CH instead of sending the whole raw data in Vi. Obviously,
the data can be regenerated at any time based on the received
equation.

The Newton Gregory polynomial needs k+1 data points to
calculate the equation while the period contains F readings,
where F is much bigger than k + 1. Thus, we propose to
select a subset of d data points, named as Di, from Vi to find
the corresponding polynomial. Di can be formed based on the
following equation:

Di = {(s1+j×bF/dc, vi1+j×bF/dc), (sF , viF )} (3)

where vi1+j×bF/dc are all readings collected at slot numbers
s1+j×bF/dc (such that j ∈ [0, F ] and 1+ j×bF/dc < F ) and
viF is the last reading in Vi.

After selecting the readings, the sensor computes the for-
ward difference table in order to find the needed variables used
in the Newton Gregory equation. Then, the sensor will send
only the set of Vi = {x0, x1, y0,∆y0,∆

2y0, . . . ,∆
cy0} which

is necessary to recalculate the y values of all readings.
Finally, Algorithm 1 describes the on-node prediction model

applied at each sensor node. Briefly, the algorithm takes the
period size F as an input for the algorithm. After collecting
data readings at each period (lines 1-5), the sensor node selects
a set of readings, Di, from Vi (lines 6-10). Finally, the sensor
calculates the final set that will send to its CH based on
the forward difference method and Newton Gregory equation
(lines 11-12).
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Algorithm 1 On-Node Prediction Algorithm.

Require: Node number: Ni, period size: F .
Ensure: Sent set: Vi.

1: Vi ← ∅
2: for j = 1 to F do
3: take reading value vij
4: Vi ← Vi ∪ {vij}
5: end for
6: Di ← ∅
7: for j = 1 to F/d do
8: Di ← Di ∪ {(s1+j×bF/dc, v1+j×bF/dc)}
9: end for

10: Di ← Di ∪ {viF }
11: compute the forward difference table
12: find the variables of Vi

IV. CH LEVEL: IN-NODE CLUSTERING MODEL

At a periodic basis, the CH will receive all variable sets
coming from all member nodes. Indeed, the spatial-temporal
correlation between neighboring sensors can produce a high
redundancy between data sets that must be eliminated before
sending final data to the sink. At the CH level, we propose to
use a clustering approach in order to summarize data coming
from the sensor, so that only useful information are sent to
the sink.

A. Pattern-Kmeans Algorithm: PKmeans

Data clustering is one of the most important approaches
used to classify data. Indeed, Kmeans has been considered
as the most popular data clustering algorithms introduced in
different domains. The idea behind Kmeans is to classify a
number of datasets into K clusters, where the similarity among
datasets in the same cluster is high. The process of Kmeans
starts by randomly selecting K datasets as the centroids of the
clusters, then each dataset is assigned to the nearest centroid
using a distance function. After that, the new centroids of
the clusters are recalculated and the process is iterated until
no more changes in the cluster centroids. Unfortunately, this
traditional Kmeans suffers from the computation complexity
due the distance calculation, especially when the number of
datasets is high and each one contains a large number of values
(like the WSN case). This leads to affect the data latency
which is an important challenge in WSN, especially in critical
applications.

In the literature, one can find many enhancements of
Kmeans in order to overcome the data latency problem [11].
In this paper, we propose a new version of Kmeans called
Pattern-Kmeans (PKmeans) inspired from the work presented
in [11]. PKmeans can largely reduce the computation time of
Kmeans and is suitable to WSN applications. After receiving
the variable sets from all sensors, PKmeans works based on
the following steps:
• The CH regenerates the raw data for each sensor based

on the Newton’s Gregory equation.

• For each dataset Vi, PKmeans calculates the
following statistical parameters: Pi = {Peak,
RMS, CrestFactor, Kurtosis, ImpulseFactor,
ShapeFactor}. Consider that Pi0 corresponds to Peak,
Pi1 corresponds to RMS and so on.

• PKmeans selects randomly K sets among Pi’s as the
initial cluster centroids.

• To assign a dataset to a cluster, PKmeans calculates
the Manhattan distance between Pi and all the cluster
centroids.

• Like Kmeans, the process is continue until no more
changes in the cluster centroids.

The parameters used in our pattern can be calculated as
follows:

Peak = 1
2
(max(xi)−min(xi)) RMS =

√
1
F

∑F
i=1(xi − x)2

CrestFactor = Peak
RMS

Kurtosis =
1
N

∑N
i=1(si−s)4

RMS4

ImpulseFactor = Peak
1
N

∑N
i=1 |si|

ShapeFactor = RMS
1
N

∑N
i=1 |si|

Algorithm 2 shows how PKmeans is working out. First,
the CH calculates the parameters of Pi for each set sent
Vi by the sensor. Then, it randomly selects K centroids as
the initial centers of the clusters. After that, the Manhattan
distance is calculated between every sensor pattern and the
cluster centroids while the data sensor is assigned to the
nearest one. A loop is done until no change in the cluster
centroids. Finally, the nearest data set to the center in order
to send to the sink as a representing of the cluster.

Algorithm 2 PKmeans Algorithm.

Require: Sensor datasets: V = {V1,V2, . . . ,Vn}, number of
clusters: K.

Ensure: Set of clusters: C = {C0, C1, . . . , CK−1}.
1: for each set Vi ∈ V do
2: // calculate the parameters of pattern Pi

3: for each parameter Pij ∈ Pi do
4: calculate Pij

5: end for
6: end for
7: randomly choose K centroids Gi (i ∈ [0, . . . ,K − 1]) for

the clusters
8: DMH = 0 // a defined variable for Manhattan distance
9: repeat

10: for each set Pi ∈ P do
11: calculate DMH(Pi, Gj) where j ∈ [0, . . . ,K]
12: consider DMH(Pi, Gm) < DMH(Pi, Gm∗) ∀ m∗ ∈

[0, . . . ,K]− [m]
13: Assign Pi to the cluster Cm

14: end for
15: Update the centroid Gm of each cluster Cm

16: until clusters’ centroids no longer changes
17: return C
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V. PERFORMANCE EVALUATION

In order to evaluate the performance of our mechanism, both
simulations and real experiments have been conducted.

A. Simulation Results

In this section, we show the results of a set of simulations
conducted using the scalar dataset picked up from sensors
deployed in the Intel Berkeley Research lab [12]. Table I shows
the information about the deployed network. We implemented
our technique based on Java simulator and we compare the
results to those obtained with PFF [10].

TABLE I
SIMULATION PARAMETERS AND THEIR VALUES.

Parameter Value
Dimension of area 42× 33 meters
Number of sensors 46

Observed conditions temperature1, humidity, light
Collected readings 2.3 millions

Slot interval 31 seconds

1) Raw Data vs Recovered Data: Fig. 2 shows the per-
formance of on-node phase by recovering raw data collected
by the sensors after applying the Newton Gregory equation
(referred as NG in the figure). We fixed the period size to 10
readings and we varied the number of selected points (d) to
4, 6 and 8. The results show that on-node phase gives a high
data accuracy level compared to the raw data. We can also
notice that, the accuracy of the recovered data increases by
increasing the number of selected points d. This is because,
the accuracy of Newton Gregory formula increases when d
increases.

Raw data NG, d=4 NG, d=6 NG, d=8
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Fig. 2. Comparison between raw and Newton Gregory generated data, F =
100

2) Sensor Data Transmission Ratio: This section studies
the average number of readings sent from each sensor to
the CH (Fig. 3). Compared to PFF technique that uses data
aggregation approach, the figure shows that on-node phase
gives better results in terms of eliminating redundancy and
reducing data transmission to the CH. Subsequently, it reduces
the amount of data transmission from 20% to 84% compared to
PFF when varying F (Fig. 3(a)), and from 41% to 64% when
varying d (Fig. 3(b)). This reduction is because, the sensor
node only sends, using on-node phase, the Newton Gregory
coefficients to the CH while in the PFF, it uses aggregation
method to send a portion of collected data instead of the whole

raw data. Therefore, on-node phase will highly minimize the
energy consumption in the sensor and increase its lifetime.
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100

200

300

400

500

600

700

800

n
u

m
b

e
r 

o
f 

re
a

d
in

g
s

50 100 250 500

period size (F)

(a) d = 6

Our on-node PFF

80

100

120

140

160

180

200

220

240

260

n
u

m
b

e
r 

o
f 

re
a

d
in

g
s

4 5 6 7 8

number of points (d)

(b) F = 100

Fig. 3. Number of readings periodically sent to the CH.

3) CH Data Transmission Ratio: Fig. 4 shows the CH data
transmission ratio or the periodic number of sets sent to the
sink after applying our in-node phase and PFF. Fig. 4(a) shows
the effects of varying the period size F while Fig. 4(b) presents
the effects of varying the number of clusters K (from 5 to 8).
The obtained results show that in-node phase can successfully
reduce the data transmission ratio at the CH, compared to
PFF. We notice that in-node phase reduces up to 80% when
varying F and K. This confirms the fact that data clustering
is an efficient approach to find redundancy among datasets.
Therefore, our mechanism can be considered as an energy-
efficient technique for both sensor and CH levels.
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Fig. 4. Periodic number of sets sent to the sink, d = 6.

B. Experiment Results

This section shows the results of real data experiments made
in our laboratory. We deployed twenty telosB motes in order
to collect temperature and humidity data where data are sent
to a sink of type SG1000 [13], which it is connected to a
laptop machine in order to retrieve and make statistics over the
collected data. TelosB uses TinyOS and can be programmed
based on nesC language. The sampling rate of all the sensors
has been set to 1 reading per 30 seconds while the period size
is set to 50 readings. Motes positions in our laboratory are
shown in Fig. 5 with IDs ranging from 1 to 20 as well as an
ID = 0 is assigned to the SG1000.

1) Raw Data vs Recovered Data: In this section, our
objective is to show the relevance of on-node phase comparing
among simulations and experiments. Similar to Fig. 2, Fig.
6 shows the difference between raw recovered data after
applying on-node phase for both temperature and humidity
sensors. As expected, the on-node algorithm allows to save
a high accuracy level of recovered data. This can be noticed
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through the nearest distance between raw and recovered data
at both sensors. Compared to the simulation results (Fig.
2), the experimentations conducted in our lab confirms the
behavior of our on-node phase concerning the reducing of data
transmission ratio while conserving a high level of information
integrity.
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Fig. 6. Comparison between raw and recovered data, d = 6, F = 100.

2) Iteration Loop Number: Fig. 7 shows the number of
iterations needed by PKmeans algorithm in order to find
the final clusters. Obviously, more the number of iterations
increases more the packet delivery time to the sink becomes.
Thus, data latency will be highly affected. The results show
that PKmeans needs approximately 4 iteration loops to fin-
ish, in both temperature and humidity. This value is likely
acceptable compared to that needed by the traditional Kmeans.
Therefore, PKmeans can be considered as an efficient data
latency algorithm that seems very suitable to the WSN case.
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Fig. 7. Number of iterations in applying PKmeans, F = 100, d = 6,K = 3.

VI. CONCLUSION AND FUTURE WORK

With a constant rise in the importance of WSNs in multiple
fields, the need for development of new big data reduction

mechanisms is being essential more and more each day. In
this manuscript, we proposed an on-node and in-node (ON-IN)
mechanism for reducing big data collected in sensor networks.
The first phase of our technique focuses on reducing the data
transmitted by sensors using the Newton’s forward difference
method. The second phase focuses on reducing the data
generated by neighboring nodes using PKmeans algorithm.
The proposed mechanism is evaluated using both simulations
and experiments on telosb motes. Our results demonstrated
that the proposed mechanism is better than other techniques
in terms of data transmission and energy consumption.

As future work, many enhancements can be made on our
mechanism. First, other interpolation methods can be devel-
oped and implemented on the sensor level to compare for
better results. Another direction to follow and study concerns
the reduction of the complexity of the PKmeans algorithm to
further reduce its data latency.
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