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‡ Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Denmark.
§ Dept. of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Copenhagen, Denmark.

§ Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Abstract—Optical coherence tomography (OCT) is an impor-
tant imaging modality that is used frequently to monitor the
state of retinal layers both in humans and animals. Automated
OCT analysis in rodents is an important method to study the
possible toxic effect of treatments before the test in humans. In
this paper, an automatic method to detect the most significant
retinal layers in rat OCT images is presented. This algorithm is
based on an encoder-decoder fully convolutional network (FCN)
architecture combined with a robust method of post-processing.
After the validation, it was demonstrated that the proposed
method outperforms the commercial Insight image segmentation
software. We obtained results (averaged absolute distance error)
in the test set for the training database of 2.52±0.80 µm. In the
predictions done by the method, in a different database (only used
for testing), we also achieve the promising results of 4.45± 3.02
µm.

Index Terms—Optical coherence tomography, rodent OCT,
layer segmentation, convolutional neural network, glaucoma
assessment.

I. INTRODUCTION

Optical coherence tomography (OCT) is an important imag-
ing modality used to capture various aspects of biological
tissues, such as structural information, blood flow, elastic pa-
rameters, change of polarization states and molecular content
[1]. OCT uses the principle of low coherence interferometry
to generate two or three-dimensional images of biological
samples by obtaining high-resolution cross-sectional backscat-
tering profiles [2]. OCT is widely used as a retinal imaging
modality since it is a non-invasive technique capable of cap-
turing the structure within the retina at the micron scale. The
retina is organized into layers and a change in this structure
have been associated with ophthalmic, neurodegenerative and
vascular disorders [3]. Some of these changes are related to
the layer thickness, so the segmentation in this type of images
is essential. Manual OCT segmentation is extremely time-
consuming, tedious, and is subjected to inter and intra observer

This work was supported by the Project GALAHAD [H2020-ICT-2016-
2017, 732613].

variability. Automated segmentation holds the potential to re-
duce the time and effort required to delineate the retinal layers
and also to provide repeatable and quantitative results. For all
of the above, the development of automatic segmentation algo-
rithms is very useful to obtain a rapid and effective diagnosis
in some ocular diseases as glaucoma, where the thickness of
some layers can be affected. In recent years, deep learning has
had a substantial impact on medical imaging. Specifically for
OCT segmentation, some recent studies have proposed the use
of convolutional neural networks (ConvNets) to face the task
of layer segmentation [4]. Leyuan Fang et al. proposed a new
method named CNN-GS for automatic segmentation of nine
layer boundaries on human retinal OCT images. This method
included a CNN model to extract useful features of specific
retinal layer boundaries and trained a corresponding classifier
to delineate eight layers. After that, class probabilities for
each pixel are used to refine the boundaries. To assess the
effectiveness of their technique, they validated their method
on 60 OCT volumes (2915 B-scans) from 20 human eyes.
As quantitative performance metrics, they calculated the mean
thickness difference (in pixels) between the automated and
manual segmentation for all layers and calculated the abso-
lute value of these differences [5]. Olaf Ronneberger et al.
proposed a network called U-net for segmentation of neuronal
structures in electron microscopic stacks. The architecture was
composed of a contracting path to capture context and a
symmetric expanding path that enabled precise localization.
A set of 30 images (512x512 pixels) from the larva ventral
nerve cord was used as training. Also, data augmentation were
introduced to reduce the number of annotated images [6]. Lee
et al. developed a CNN that detected intraretinal fluid (IRF)
on OCT. The CNN used was a modified version of the U-
net autoencoder architecture with a total of 18 convolutional
layers and a sigmoid function as final activation function
that generated a prediction of a binary segmentation map.
Manual segmentation of 1,289 OCT macular images were
used for training and cross-validation. This model segmented
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images with a 0.911 cross-validated Dice coefficient [7]. It
should be noted, no recent studies have been focused on the
segmentation of the rodents retina layers using deep learning
techniques. So far, this kind of methodology has been only
proposed to segment human retinal layers and the architectures
proposed for humans by themselves do not obtain satisfactory
results in rodents because the human and rodent retina present
significant differences. This paper presents a method based on
CNNs to detect the most significant retinal layer boundaries
in rat OCT images which are represented in Fig.1.

Fig. 1. Retinal layer boundaries segmented (ILM: Internal Limiting Mem-
brane, IPL: Inner Plexiform Layer, INL: Inner Nuclear Layer, IS: Inner
Segment, OS: Outer Segment).

Specifically, it consists in an encoder-decoder fully convo-
lutional network (FCN) architecture, built upon ReLayNet [8].
Originally Relaynet was developed to segment human retinal
layers and, although human and rodent retina presents sig-
nificant differences, this study demonstrates that an algorithm
used to detect several layers of the human retina could be
adapted to capture the most significant features in rats OCT
followed by the robust post-processing algorithm proposed in
this work.

II. MATERIALS AND METHODS
A. Rodent OCT images

For this study, we used two private databases of images
which were acquired at different conditions and belong to
different rodent. In both cases, the permission for animal
experiments was granted by the Danish Council for Animal
Experimentation and rat OCT images were taken with the
Micron IV equipment (Phoenix Research Labs, Pleasanton,
USA). To carry out both studies, the images of rats were
acquired before and after intravitreal injection of endothelin-1
(ET-1). ET-1 is a vasoconstrictor of retinal vessels that causes
ischemia. So, this injection contributes to the degeneration of
the retinal layers, simulating the conditions of a retinal disease.
This fact makes the rat ET-1 intravitreal injection model
suitable for research studies about retinal layer monitoring.
In particular, the first database (RatsOne) is composed of 129
OCT images, belonging to ten rats of 1024x1024 pixels with
0.9775 µm/pixel. The second database (RatsTwo) contains
130 OCT images of 1024x1024 pixels with 0.9775 µm/pixel
of 12 rats. The most significant retinal layer boundaries that

were visibly distinguishable on these images were manually
segmented by an expert (Fig.1). The RatsOne database is used
for training and validation purposes. The RatsTwo database is
used to do a second test and guarantee that our model is useful
to different sets of images. So, the goal of the method proposed
in this paper will be to segment those three-layer boundaries
(ILM, IPL-INL and IS-OS) and generalise their results.

B. Fully convolutional neural networks (FCN)

The segmentation of the retinal layers proposed in this paper
can be interpreted as a classification problem. Given a pixel
of an OCT image p = f(x, y), the goal is to assign it into
its corresponding label k in the label space L = 1, ..., N
being N the number of possible classes. In this work, N = 4,
i.e. the number of boundary layers to be segmented plus one.
To achieve this task, an encoder-decoder fully convolutional
network built upon ReLaynet [8] is proposed in this paper (see
Fig. 2).

1) Encoder-decoder blocks: Each encoder block is com-
posed by four layers, in sequence: convolution layer, batch
normalization layer, ReLU activation layer and max-pooling
layer. To capture the transitions between the different retinal
layers, 64 rectangular kernels of 7x3 are defined in the
convolutional layers of all encoder blocks. Note that zero
padding is used to preserve the spatial dimensions of the
activation maps after each convolutional layer. Then, batch
normalization technique is applied to avoid overfitting during
the training procedure [9] and ReLU activation function is
employed to introduce non-linearities and resulting in much
faster training for large networks. Max-pooling operation is
introduced in the last layer of each encoder block to condense
the feature information reducing the spatial dimensions. This
reduction depends on the kernel size and the stride used, in this
case, the dimensions are reduced by a half since max-pooling
kernel with stride s = 1 is used. In addition, to maintain
spatial consistency, the pooling indexes of this operation are
achieved and transferred to the corresponding unpooling layer
in the decoder block.

Each decoder block consists of five layers, in sequence:
unpooling layer, concatenation layer, convolution layer, batch
normalization and ReLU activation function. The unpooling
layer upsamples the feature maps from the previous decoder
block to a double resolution by using the achieved pooling
indexes corresponding to the matched encoder block. After
this step, a concatenation of the upsampled feature maps
with the corresponding output feature maps of the matched
encoder block is performed to enrich the information and
avoiding vanishing gradient problems. Finally, convolutional
layer, batch normalization and ReLu are applied to the con-
catenated feature map.

The final decoder block consists of a convolutional layer
with 1x1 kernel and the softmax activation function. This
part is responsible to associate each pixel to one of the
four possible classes (i.e. upper bound, RNFL+GCL+IPL,
INL+OPL+ONL+IS-OS, bottom bound). Note that the target
layers are shown between the boundaries exposed in Fig 1.
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Fig. 2. The encoder-decoder architecture proposed to address the segmentation task.

2) Training process:
Data conditioning. Because the images used for training

have large dimensions, a patch-wise learning methodology is
applied in order to avoid memory problems. In this case, it is
employed 1024 × 128 patches. Furthermore, we augment the
sliced data by introducing random geometric transformations
such as croppings, horizontal flips, rotations and translations
that permits reducing the number of images annotated. In
the testing stage memory requirements are more permissive
allowing to predict a test sample in two slices of 1024× 512
with a Titan V GPU.

Data partitioning. Attending to Section II-A, the dataset
used to train, RatsOne, is composed by 129 images coming
from ten different rodents. With the aim of avoiding biased
results due to a specific partition of the database into training
and test subsets and obtaining the segmentation of the 129
images, an external K-fold cross-validation technique was
carried out. Specifically, K = 8 partitions were created.
The images belonging to rats 1-7 composed seven individual
partitions while the images from the last three rats were
grouped forming the eighth fold to avoid imbalance problems
(see Table I). Consequently, in the training process, K − 1
different folds in each external iteration were used while the
remaining partition was utilized to test the model performance.
In addition, an internal leave-one-out cross-validation was
carried out, using the images from one different training fold
in each internal iteration as validation set. As a result of this
process, (K − 1) × K models were learned. This technique
guarantees reliable results and robust models.

Loss function. The proposed network is trained by opti-
mizing a weighted multi-class logistic function. This logistic
loss provides a probabilistic measure of similarity between
the prediction and the ground truth. Let pc(x) be the prob-
ability for the pixel x of belonging to the class c and gc(x)
the ground truth probability, the basic logistic loss function
can be defined as L(x) = −

∑
x ω(x)gc(x)log(pc(x)). The

weights ω(x) are introduced in the loss function with two

TABLE I
DISTRIBUTION OF THE RAT IMAGES OF RATSONE THROUGHOUT THE

EIGHT FOLDS.

Rat ID #images Fold
C23 GP1A A1 16 1
C23 GP1A A2 17 2
C23 GP1A A3 16 3
C23 GP1A A4 16 4
C24 GP2B A1 16 5
C24 GP2B A2 16 6
C24 GP2B A3 16 7
C24 GP2B A4 4 8
C25 GP1A A1 8 8
C25 GP2B A3 4 8

objectives: (i) compensating the effects produced by the im-
balance character of the classes (ii) boosting the accurate
segmentation of the retinal layer boundaries. The pixels near
to the tissue-transition regions are the most challenging cases
to be correctly segmented due to diffused boundaries, speckle
noise and the limited OCT resolution. Given the cumulative
frequency fc of class c in the training data (i.e. the prior class
probability), the logic operator I , a ground truth image M
and the 2D gradient operator ∇, the ω(x) term is formulated
as ω(x) =

∑
c I(M(x) = c) · f̃

fc
+ ω0 · I(|∇M(x)| > 0),

where f = [f1, f2, ..., fc] is a vector containing all frequen-
cies. The first term models median frequency balancing and
compensates for the classes imbalance problem by enhancing
classes with low probability. The second term establishes
higher weight on anatomical boundary regions to emphasize
on the correct segmentation of contours. ω0 balances both
terms.

Hyper-parameter configuration. The proposed network
is learned through the stochastic gradient descent (SGD)
optimizer using mini batches of eight samples. A momentum
value of 0.9 and the learning rate is initially established to
0.001 and reduced by one order after every 20 epochs. The
training stage is composed by sixty epochs and the model that
minimices the validation loss is chosen as the best one. The
Titan V GPU was used to carry out this process.
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3) Post-processing: After the training and the testing pro-
cesses, a segmentation map per image is obtained. The second
column of Fig. 3 shows some segmentation maps correspond-
ing to representative images of the RatsOne and RatsTwo
databases. From these segmentation maps, the objective is to
obtain the target boundaries (third column) that correspond to
those which delimitate the different classes. To accomplish
this goal, a post-processing step is carried out for all the
segmentation maps. Firstly for each layer, the component
(defined by 8-connectivity) with the greater area is chosen.
Secondly, a closing operation defined as φB(x) = εB(δb(X))
with a disk (B) as structural element is applied. Finally, due
to the speckle noise affecting the OCT image, each layer is
soften using an 8-degree polynomial.

(a) (b) (c)
Fig. 3. Representative images from RatsOne and RatsTwo databases: (a) OCT
images, (b) corresponding segmentation maps and (c) boundary segmentation
results. The two top rows show RatsOne images and the two bottom rows
show images from RatsTwo database.

III. RESULTS

To evaluate the performance of the proposed method, Rat-
sOne and RatsTwo databases were manually segmented. The
results obtained on RatsOne database were compared to the
commercial Insight software from Phoenix Research Labs,
which offers a tool for automatic segmentation. To obtain a
quantitative analysis of the results, different measures were
computed: absolute distance error between layer boundaries,
layer thickness error and Dice similarity coefficient (see Table
II-III).

TABLE II
ABSOLUTE DISTANCE ERRORS BETWEEN BOUNDARIES (MEAN AND

STANDARD DEVIATION IN µM) CALCULATED COMPARING THE RESULTS
OF THE PROPOSED METHOD AND INSIGHT WITH THE GROUND TRUTH ON

RATSONE IMAGES.

Boundary Proposed InSight
ILM 1.93 ± 0.55 6.97 ± 4.59
IPL-INL 3.21 ± 0.72 10.49 ± 4.06
IS-OS 2.41 ± 1.11 8.67 ± 5.90
Overall 2.52 ± 0.8 8.71 ± 4.85

Note that InSight software does not detect some layers under
analysis on some database images. So, only the automatically
segmented layers were taken into account for absolute distance
error computation (ILM is only detected in 113, IPL-INL in 26
and IS-OS in 70). Because of this, layer thickness error and
Dice coefficient were not computed making use of InSight
results.

Due to the inefficiency of the InSight software over the
RatsOne database, RatsTwo images were not automatically
segmented with this software, only absolute distance error,
layer thickness error and Dice similarity coefficient between
ground truth and our method was computed, see Table III-
IV. These experiments was executed in MATLAB 2018b and
MatConvNet framework [10].

IV. DISCUSSION

A wide validation of the proposed method was performed
in the previous section. Regarding the RatsOne dataset, it
must be emphasised that, unlike the proposed method, the
commercial software Insight does not segment a fixed number
of layers and its segmentation is not sufficiently accurate.
Regarding the RatsTwo database, this was only used for testing
and not for training purposes. It should be remarkable that,
although the reported results were not as good as those reached
on the RatsOne database, they are really promising taking
into account the high variability of the RatsTwo database.
Thereby, it is demonstrated that the proposed model could
be generalised and applied to different datasets. This would
avoid to do a manual segmentation or to train a new model
if the time, hardware or software necessary to do that is not
available. As it was mentioned in Section II, the proposed
method is built upon ReLayNet architecture [8]. The results
obtained in this paper demonstrate that an adecuate adaptation
of algorithms and good post-processing can help to generalize
other deep learning algorithms to properly work on different
images.

V. CONCLUSION

The use of OCT in rats presents interesting advantages for
new drug testing. Therefore, the development of algorithms
that allow the automatic analysis of this type of images is of
importance.

Nowadays, OCT is very used as a retinal imaging modality.
This fact allows the study of retinal diseases such as glaucoma
which is characterized by the loss of RNFL thickness. In this
paper, an algorithm to segment the rodent retinal layers is
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TABLE III
THICKNESS ERRORS AND DICE COEFFICIENT (MEAN AND STANDARD DEVIATION) CALCULATED COMPARING THE RESULTS OF THE PROPOSED METHOD

WITH THE GROUND TRUTH (GT) FOR IMAGES FROM RATSONE AND RATSTWO DATABASES.

Layer
Average thickness (µm) Thickness errors (µm) Dice

RatsOne RatsTwo RatsOne RatsTwo RatsOne RatsTwo
GT proposed GT proposed proposed proposed proposed proposed

RNFL+GCL+IPL 66.81 67.37 72.34 67.85 1.70 ± 1.28 5.5 ± 3.8 0.96 ± 0.01 0.94 ± 0.02
INL+OPL+ONL 97.59 97.44 95.26 96.89 2.14 ± 1.76 4.42 ± 4.4 0.97 ± 0.01 0.95 ± 0.03
Overall 164.41 164.8 167.6 164.74 1.92 ± 1.52 4.96 ± 4.1 0.97 ± 0.002 0.95 ± 0.03

TABLE IV
ABSOLUTE DISTANCE ERRORS BETWEEN LAYER BOUNDARIES (MEAN AND

STANDARD DEVIATION IN µM) CALCULATED COMPARING THE RESULTS
OF THE PROPOSED METHOD WITH THE GROUND TRUTH OF THE RATSTWO

DATABASE

Boundary proposed
ILM 3.09± 0.94
IPL-INL 5.25± 3.31
IS-OS 5.04± 4.81
Overall 4.45± 3.02

proposed. This permits to segment the RNFL+ GCL+IPL layer
that can be used as an indicator for glaucoma diagnosis. More-
over, this type of algorithms reduces the subjectivity of manual
methods making faster and less tedious the segmentation task.

After a wide validation using two different databases, we
demonstrated that CNN architectures proposed to segment
human retinal layers can be adapted to successfully perform
this task on rodent OCT images.
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