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ABSTRACT

Interest in stress recognition has notably increased over the
past few years. In this work, we focus on recognizing stress
from speech. We propose the use of modulation spectral fea-
tures as input to a convolutional neural network (CNN) for
classifying stress. As benchmark, the OpenSMILE features
used in the INTERSPEECH 2010 Paralinguistic Challenge is
adopted and evaluated with a support vector machine (SVM)
and a deep neural network (DNN) based backends. Experi-
ments are performed with the well-known Speech Under Sim-
ulated and Actual Stress (SUSAS) database. Performances
are investigated considering 2-class, 4-class and 9-class clas-
sification problems. Results show that the proposed approach
outperforms the benchmark on a challenging 9-class classifi-
cation task with accuracy as high as 70% representing gains
of roughly 18% over the benchmark.

Index Terms— Stress detection, modulation spectrum,
convolutional neural network

1. INTRODUCTION

Mental stress has become a recurrent threat to modern society.
If not treated in early stages, it can become a chronic condi-
tion leading to serious health problems [1, 2]. Its detrimental
effects, for instance, can range from physical (e.g., cardiovas-
cular disease) to psychological such as depression and sleep
disorders [3, 4]. A large component of stress is linked to the
workplace, with as much as 50% of employees suffering from
“work stress” [5]. This type of stress has often been asso-
ciated with job performance degradation [6]. Moreover, for
critical jobs, such as first responders and air traffic controllers,
to name a few, stress can lead to drastic consequences. Post
traumatic stress disorders can even lead to suicidality [7].

Stress influences the human autonomic nervous system
(ANS), altering the heart rate, breathing rate, fatigue levels, as
well as the muscle tension of the vocal chord, specially while
performing a secondary physical task [1]. As such, stress can
impact the way we produce speech [8]. Figure 1, for exam-
ple, depicts three spectrograms for neutral, angry and speech
produced under the lombard effect. As can be seen, for angry

and lombard speech, the spectrogram shows more energy in
higher frequencies when compared to the neutral speech pro-
duced by the same speaker. Note that shift of the fundamental
frequency F0, as well as the presence of more prominent for-
mants and higher average frequencies are normally expected
with increased levels of stress or type of emotion [9].

Although spectrum variability may benefit stress detec-
tion from speech, multi-class stress recognition is still a
challenging task. Several features such as pitch, energy,
spectral band energy, and cepstral coefficients have been ex-
plored for stress and emotion detection. The authors in [10],
for instance, proposed a set of high order features for emo-
tion/stress detection using support vector machine (SVM)
and extreme learning machine (ELM) as backend. Such fea-
tures were combined with the so-called Interspeech 2010
features to improve recognition performance. In [11], in
turn, perceptual content of voice quality, first- and second-
order differences based on a new Fourier parameter (FP)
model were proposed for speaker-independent speech emo-
tion recognition. An improvement of 16.2% was achieved
when combining the FP model with mel-frequency cepstral
coefficients (MFCC). Recently, researchers have explored the
use of deep neural networks (DNN) for emotion detection.
In [12], an end-to-end multimodal system was proposed to
recognize spontaneous emotion from raw speech and visual
data. Although a number of studies have addressed the use of
DNNs for emotion recognition, to the best of our knowledge,
work has yet to emerge on the use of DNNs for speech-based
stress detection.

In this paper, we aim to fill this gap. Recently, we pro-
posed a new set of modulation spectral features (MSF) that,
when combined with statistical pooling, resulted in accu-
rate continuous speech emotion recognition “in-the-wild”
[13, 14]. Notwithstanding, for short utterances (i.e. less
than 3 seconds) the statistical pooling is expected to provide
low performance as it depends on the analysis window length,
typically 1 to 4 s. Hence, our goal is two-fold. First, we inves-
tigate if the MSF features can be applied to stress detection.
Next, as the dataset used in our experiments contains short
utterances, we propose the use of a convolutional neural net-
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Fig. 1: Spectrogram of speech in (a) neutral, (b) angry and (c) lombard for the same sentence and speaker.

work (CNN) in lieu of the previous statistical pooling to boost
performance. Experiments are performed using the Speech
Under Simulated and Actual Stress (SUSAS) database [15].
Results are compared to two benchmark systems based on
features extracted from the OpenSMILE toolkit and a sup-
port vector machine (SVM) as well as a deep neural network
(DNN) classifiers.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the proposed features and model. Section 3
gives details on the experimental setup and results are re-
ported in Section 4. Conclusions are drawn in Section 5.

2. BACKGROUND: FEATURES AND MODELS

In this section, we describe the proposed features and the pro-
posed convolutional neural network model.

2.1. Modulation Spectrum Features

The use of modulation spectral features (MSF) is motivated
by our recent work [16, 14, 13], where MSFs were success-
fully employed in spontaneous speech emotion recognition
in-the-wild. In these previous works, however, the focus was
in continuous recognition of emotion primitives, such as va-
lence, arousal, and dominance. For such task, feature pooling
was shown to improve performance in realistic settings and
statistical functionals were used [13]. These features have yet
to be tested for emotion classification and for stress detection.

In order to extract the modulation spectral representa-
tion, the speech signal activity level is first normalized to -26
dBov (dB overload), eliminating unwanted energy variations
among speech samples. Next, we filter the speech signal x̂(n)
with a 23-channel gammatone filterbank, which simulates the
cochlear processing [17]. The first filter of the filterbank is
centered at 125 Hz and the last one at half of the sampling
rate [13]. Each filter bandwidth follows the equivalent rect-
angular bandwidth (ERB), as described in [17]. The temporal

envelope ej(n) is then computed using:

ej(n) =

√
x̂j(n)2 +H{x̂j(n)}2, (1)

where H{·} denotes the Hilbert transform and x̂j(n) is
the output of the j-th acoustic filter. Temporal envelopes
ej(n), j = 1, . . . , 23 are then windowed with a 256-ms Ham-
ming window and shifts of 40 ms. The modulation spectrum,
Ej(m, fm), is obtained after computing the discrete Fourier
transform F{·} of the temporal envelope ej(m;n)

Ej(m; fm) = |F(ej(m;n))|, (2)

where m represents the m-th frame obtained after every Ham-
ming window multiplication and fm designates modulation
frequency. The time variable n is dropped for convenience.

Lastly, an auditory-inspired modulation filterbank is used
to group modulation frequencies into eight bands, motivated
by evidence of similar modulation filterbank structure in the
human auditory system [18]. The result of this computation
is denoted as Ej,k(m), k = 1, ..., 8, where j indexes the gam-
matone filter and k the modulation filter. The filter center
frequencies are equally spaced in the logarithmic scale from
4 to 128 Hz. From this representation, five feature sets can be
extracted, as summarized in Table 1.

The first configuration E1 corresponds to the vectoriza-
tion of the average 23 × 8 modulation spectrum energy ma-
trix (i.e., the Ej,k, averaged over all the m frames), thus cor-
responding to utterance level features. The second config-
uration, E2, is attained by appending E1 with 39 additional
features, corresponding to average energy, spectral flatness,
spectral centroid, slope, and root mean squared-error across
grouped modulation bands. More details about these fea-
tures can be found in [13]. The third configuration (E3), in
turn, is the result of applying statistical feature pooling to E1
and combining it with E1. As in [13], pooling is performed
using eight functionals, namely: mean, standard deviation,
variance, kurtosis, skewness, range, min, and max. Simi-
larly, the fourth configuration (E4) corresponds to the same
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Fig. 2: Proposed CNN architecture.

Table 1: Dimensionality of MSF feature configurations

Configuration Feature Dimensionality After PCA
E1 184 140
E2 223 140
E3 1656 140
E4 1968 140
E5 23x120 N/A

8-functionals pooling, but of the E2 features. Principal com-
ponent analysis (PCA) is also applied to reduce dimensional-
ity to a set of more uncorrelated features, as depicted in Table
1. Final dimensions were defined empirically.

Lastly, the fifth configuration (E5) considers the 23× 8×
M tensor configuration over all M modulation frames of a
speech signal, as we wish to explore the use of a CNN to re-
place the functional pooling. To assure the CNN has inputs
always of the same size, we propose the concatenation of the
eight modulation bands for B consecutive active-speech mod-
ulation bands. Here, B is driven by the duration of the avail-
able speech data. For the SUSAS database, B = 15, thus
resulting in a 23 × 120 input. In case of very short dura-
tion files, the last frame was replicated the number of times
necessary to complete 120. Such a configuration was chosen
empirically based on the average duration of the speech files.

2.2. Proposed CNN Architecture

Convolutional neural networks have successfully been ap-
plied to 2D image classification, as well as video, speech and
audio processing applications [19]. CNNs are typically com-
prised of two layers: convolution and pooling. Convolutional
layers are in charge of mapping, into their units, detected
features from local connections in previous layers. Known
as feature maps, this is the result of a weighted sum of the
input features (or feature maps from previous convolutional
layers) passed through a non-linearity such as ReLU [19]. A

pooling layer will typically take the maximum or average of
a set of neighboring feature maps, reducing dimensionality
(i.e., subsampling) by merging semantically similar features.

As mentioned previously, here we are interested in ex-
ploring if CNNs can be used to replace the functionals-based
pooling of [13] for emotional and stress classification. Our
intuition is that a data-driven pooling mechanism can out-
perform functionals-based pooling and adapt to similar tasks,
such as stress and emotion classification. The architecture
proposed herein is depicted by Fig. 2. As can be seen, the
model received as input a 23 × 120 matrix (stress detection
from SUSAS), as described in Section 2.1. The first convolu-
tional layer then applies 32 filters of 15 × 15 receptive field
dimensionality. Each unit in the next layer is attained after ap-
plying ReLU as an activation function on each feature map.
Another convolutional layer of 64 filters of 3 × 3 receptive
field is then applied on the output of the previous layer, fol-
lowed again by the ReLU activation function. Next, a max-
pooling operation (2 × 2) is applied prior to a dropout (0.25)
regularizer. A fully-connected layer is then used, followed by
a dropout (0.25) and the softmax output unit. As optimizer,
adadelta [20] was used as an adaptative leaning rate method.

3. EXPERIMENTAL SETUP

In this section, we describe the databases used, benchmark
algorithm, classification tasks, and figure-of-merit.

3.1. Datasets and Dataset Partitioning

The SUSAS dataset is adopted in our experiments. The
database is comprised of actual and simulated stress condi-
tions. Only simulated stress was considered herein, as the
actual settings involved helicopter pilots in action or riders in
a roller coaster, thus the high levels of ambient noise could
interfere with these initial tests. The SUSAS database was
recorded from 32 speakers (13 female, 19 male) ranging
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Table 2: Stress recognition accuracy (SUSAS dataset).

Classifier Features 2 Classes 4 Classes 9 Classes Average

SVM

OpenSMILE 68 % 57 % 58 % 61 %
E1 61 % 53 % 44 % 52 %
E2 63 % 53 % 46 % 54 %
E3 63 % 54 % 49 % 56 %
E4 63% 53 % 50 % 54 %

DNN

OpenSMILE 83 % 77 % 58 % 72 %
E1 67 % 62 % 55 % 52 %
E2 69 % 63 % 58 % 61 %
E3 74 % 67 % 57 % 63 %
E4 75 % 67 % 62 % 68 %

CNN E5 76 % 71 % 70 % 72%

in ages from 22-76. Nine different stress conditions were
recorded: neutral, angry, loud, soft, slow, Lombard effect
(pink noise presented binaurally at an 85 dB SPL level), fast,
and speech produced under two levels of workload: low and
high. Each class contains two tokens of 35 highly confusable
aircraft communication words. For more information on the
database the interested reader can refer to [15].

3.2. Benchmarks and Figure-of-Merit

As benchmarks, we have selected the baseline method used in
recent emotion challenges. More specifically, models rely on
the acoustic feature set extracted by the OpenSMILE toolkit
and used in the INTERSPEECH 2010 Paralinguistic Chal-
lenge [21]. PCA is also applied to the utterance level features
reducing dimensionality from 1582 to 200. As in this chal-
lenge and in our previous work, an SVM classifier is used for
the benchmarks [22, 13], with a linear kernel. As figure-of-
merit, classification accuracy on the unseen test set, for each
of the two datasets, is reported. Three tasks are explored: (1)
2-class task (i.e., angry vs. neutral), (2) 4-class task (i.e., neu-
tral, angry, soft, and fast), and (3) a 9-class task. Results are
reported based on a 3-fold cross-validation.

4. EXPERIMENTAL RESULTS

Table 2 summarizes our findings for the 2-, 4-, and 9-class
problems. As can be seen, the proposed method based on a
CNN outperforms the other approaches for the most challeng-
ing task of 9-class classification. While it achieved 70 % ac-
curacy, the benchmark provided 58 % (18 % lower accuracy).
Notice that, the benchmark is also outperformed by our E4-
DNN based method, which achieved 62 % accuracy for the
same task, 4 % higher than the benchmark. Compared to all
the other systems, the CNN based method showed to be the
least affected when the number of classes were increased. The
DNN-OpenSMILE system, for instance, provided the best
results for the 2-class and 4-class tasks, but showed to be
very sensitive as the number of classes increased. Its per-
formance decayed 30% from the 2-class to 9-class problem

while the proposed CNN system dropped only 10 %. On av-
erage (see last column), both methods presented equivalent
accuracy 72%, with the E4-DNN based method being the sec-
ond best system in average (68 % accuracy achieved).

The DNN-based systems increased the performance of all
the features when compared to the SVM-based one. The gain
for the OpenSMILE were substantial. We can observe in Ta-
ble 2 an increase from 68 % to 83 %, for the 2-class problem,
and from 57 % to 77 %, for the 4-class task, respectively 22
% and 25 % improvement. PCA was not applied prior to the
DNN architecture. Although, it helps to decorrelate features
and speed convergence it was less effective with the DNN.

Results in the Table show that our previous MSF features
combined with a DNN model can be used for stress detection
from speech, offering good performance especially in cases
where the number of classes are considerably high. Moreover,
as the performance of these features are dependent on the size
of the analysis window used for the pooling procedure, from
the results we can conclude that the proposed CNN method
seems to be the optimal choice in lieu of the pooling scheme
proposed in [13], as it improved performance across all the
classification tasks.

5. CONCLUSION

The goal of this study has been two-fold. First, to explore the
applicability of newly-proposed MSF and functionals-based
pooling mechanisms for speech-stress detection. Second,
to investigate the use of a the MSF features combined to
a convolutional neural network to boost performance. We
found that statistical pooling of MSF features can be useful
for stress detection, but with performance constrained to ut-
terance duration. By replacing the functionals-pooling step
by a CNN, substantially higher accuracy is achieved. Two
of the investigated methods outperformed the benchmark
for the 9-class classification: the E4-DNN based system and
specially the CNN-based one. Future work will explore fu-
sion of the OpenSMILE features with that of MSFs to see if
complementary can be found.
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