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Abstract—During the last decade, there is an ever increasing
interest about the decryption and analysis of the human visual
system, which offers an intelligent mechanism for capturing
and transforming the visual stimulus into a very dense and
informative code of spikes. The compression capacity of the
visual system is beyond the latest image and video compres-
sion standards, motivating the image processing community
to investigate whether a neuro-inspired system, that performs
according to the visual system, could outperform the state-of-
the-art image compression methods. Inspired by neuroscience
models, this paper proposes for a first time a neuro-inspired
compression method for RGB images. Specifically, each color
channel is processed by a retina-inspired filter combined with a
compression scheme based on spikes. We demonstrate that, even
for a very small number of bits per pixel (bpp), our proposed
compression system is capable of extracting faithful and exact
knowledge from the input scene, compared against the JPEG
that generates strong artifacts. To evaluate the performance of
the proposed algorithm we use Full-Reference (FR) and No-
Reference (NR) Image Quality Assessments (IQA). We further
validate the performance improvements by applying an edge
detector on the decompressed images, illustrating that contour
extraction is much more precise for the images compressed via
our neuro-inspired algorithm.

Index Terms—Retina-inspired filter, Leaky Integrate-and-Fire
model, spikes, FR-IQA, NR-IQA, edge detection.

I. INTRODUCTION

We live in an era when the amount of digital information

is expanding at astonishing rates due to the Internet of Things

(IoT). According to recent studies, 2.5 quintillion (1018)

bytes of data are produced every day. In this data deluge,

images and video play a substantial role as they occur in

different resolutions depending on the device that produces

them. However, the resolution of an image or a video should

be supported by efficient processing tools, such that the quality

of the retrieved information after storage and/or transmission

will remain high and free of visual artifacts. This necessitates

the design of new, profitable and energy-efficient mechanisms,

which enable the detection of the most informative part of

the visual scene, while also extracting knowledge about the

content semantics without any prior information.

Image and video compression algorithms are among the key

processing tools for balancing between the assigned bits per
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pixel (bpp) and the achieved reconstruction quality. During the

last decades, significant efforts have been made for the devel-

opment of efficient image and video compression standards.

JPEG and JPEG2000 are the most widely used image com-

pression algorithms, while H.264 and HEVC achieve state-of-

the-art performance in video compression applications. The

common drawback of all these systems is that the input signal

is processed without any knowledge about the content of the

visual scene. In addition, their embedded mechanisms, such as

macroblock splitting, cause unpleasing and distracting artifacts

to the human perception, especially for low bpp values.

The human visual system (HVS) perception has been gain-

ing an increasing interest as a powerful mechanism for improv-

ing the performance of the compression systems. The HVS en-

ables the intelligent capturing and transformation of the visual

information into a sequence of biphasic events, the so-called

spikes, which constitute a highly compact, yet very informative

and efficient, neural code able to be transmitted undamaged to

the visual cortex, the part of the brain that processes the visual

information. Recently, the structure and functionalities of the

HVS have motivated the signal processing community to build

neuro-inspired systems that mimic the brain. Among others,

neuromorphic chips [1], bioinspired cameras [2], convolutional

neural networks, virtual retina [3] and neuromimetic image

and video compression mechanisms [4]–[8] are the most well-

known brain-inspired systems.

This paper proposes a novel algorithm for neuro-inspired

compression of RGB images, based on a recently introduced

retina-inspired coding/decoding algorithm for grayscale im-

ages. In particular, a lossy compression algorithm is designed

consisting of a retina-inspired filter [9] and a spike-based

coding/decoding scheme [8]. The algorithm mimics the way

the visual system captures and transforms the visual infor-

mation along time into a sequence of spikes, which are then

used to reconstruct the image. We compare the performance

of the proposed system against the JPEG standard and we

demonstrate that, for a given bpp value, our system is better

capable of describing the details of the visual scene, while

avoiding the block-effect artifacts, especially for a small bpp

value. We use Full-Reference Image Quality Assessments (FR-

IQA) like the Peak Signal to Noise Ratio (PSNR) and the

Structural SIMilarity index (SSIM) [10], which are highly used
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when the reference undistorted image is available. However,

this is an ideal scenario since, in practice, neither the reference

image is available nor any of its features. This is the case

of the No-Reference Image Quality Assessments (NR-IQA)

like BRISQUE [11]. Additionally, we employ the Sobel edge

detection algorithm to illustrate the performance improvements

of our method by showing that, for the same bpp, our

compression system is much more efficient in detecting the

objects’ contours in a given image, in contrast to JPEG.

The rest of the paper is organized as follows: Section II

overviews the retina-inspired filter and the neuro-inspired

quantization scheme, which constitute the main processing

tools of our proposed compression method, hereafter called

NICE. Section III analyzes the architecture of NICE applied

on RGB images, and describes the quality metrics to be used

for the evaluation of its performance. Section IV presents a

comparison between our proposed algorithm and the JPEG

applied to RGB images, while Section V summarizes the

main outcomes of this study and proposes directions for future

extensions.

II. BASICS OF NEURO-INSPIRED COMPRESSION

A. Retina-inspired Filter

The retina-inspired filter (RIF) [9], which is motivated by

retina-related tools [12], has been proposed to approximate

precisely the dynamic properties of the outer plexiform layer

(OPL) of retina. OPL is responsible for capturing and trans-

forming the visual stimulus into electrical current. The RIF

is a bunch of time-varying difference of Gaussian filters, the

so-called weighted difference of Gaussians (WDoGs), defined

by

φ(x, t) = a(t)Gc(x) − b(t)Gs(x) , (1)

where Gc(x), Gs(x) are the center and surround Gaussian

filter, respectively, and a(t), b(t) are two time-varying weights.

Assuming a uniform temporal sampling, t1, . . . , tm, a different

DoG filter φj(x) = φ(x, tj) is defined for each time instance

tj , j = 1, . . . ,m. Let a temporally constant input defined by

f(x, tj) = f(x)1[0,T ](tj) , j = 1, . . . ,m , (2)

where f(x) = {f(x1), . . . , f(xn)} is the input signal that

consists of n pixels, 1 is the indicator function that equals 1,

if 0 ≤ t ≤ T , and 0 otherwise, and T is the time for which

the signal is flashed. Then, as it is proven in [9], for each time

instance the RIF yields

Aj(x) = A(x, tj) = φj(x)
x
∗ f(x) , j = 1, . . . ,m , (3)

where Aj(x) is the transformed signal at time j and
x
∗ denotes

a spatial convolution. In addition, the RIF has been proven to

be an invertible transform according to the frame theory [13],

meaning that it perfectly reconstructs the input signal.

B. Spike-based Coding

The Leaky Integrate-and-Fire (LIF) model approximates a

neuron by an electrical circuit [14]. Then, the pixels’ intensity

is determined by the current I that runs the circuit. Under the

assumption that the input current is constant during a period

of time, I(t) = I1[0≤t≤T ](t), each I can be described by the

arrival delay, d, of the first spike as follows,

d =







+∞, RI < θ,

h(RI; θ) = −τm ln

[

1−
θ

RI

]

, RI > θ,
(4)

where R is the resistance, τm = RC is the leaky integrator

term, C is the capacitor of the electrical circuit and θ is the

membrane threshold of the neuron. Due to the high memory

cost of the perfect LIF [15], it was proven in [8] that by

encoding the number of spikes, N , during the observation

window T , instead of the delays, provides enough information

for recovering the input signal,

N =







0, d > T,
⌊

T

d

⌋

, d ≤ T .
(5)

Doing so, it is possible to approximate the spike arrival delays

d̃ = T/N and reconstruct the best possible values,

Ĩ =







0, N = 0,

h−1(d̃; θ) = h−1

(

T

N
; θ

)

, N 6= 0 .
(6)

III. PROPOSED NEURO-INSPIRED COMPRESSION METHOD

FOR RGB IMAGES

The visual system is more sensitive to the luminance of

light than the color. This is confirmed by the fact that the

retina consists of two different kinds of photoreceptors; the

rods, which are responsible for capturing light, and the cones,

which are used to detect color, where the population of rod

cells is much higher compared to the one of cone cells. As a

consequence, the limited number of cones keeps within bounds

their physiological and mathematical analysis, whereas the

vast number of rods facilitated their study. The RIF filter is

based on neuroscience models that approximate the shape and

behavior of rod cells. Thus, when we apply the RIF filter to an

RGB image, f , that consists of three different color channels

(fR, fG and fB , that correspond to the red, green and blue

colors, respectively) we proceed by applying the RIF and the

spike-based coding to each individual channel, since there are

no available neuro-inspired models for approximating the color

perception motivated by the cones in the retina of the eye.

Fig. 1 illustrates the proposed architecture, where each color

channel is transformed by the RIF filter, whose output is a

bunch of layers Aj(x), j = 1, . . . ,m. Let x1, . . . , xn be some

spatial samples and Aj(x1), . . . , Aj(xn) the associated pixels

of the j-th output layer of the RIF, which is then fed to the

spike-based encoder. For each pixel intensity of the j-th layer,

the spike-based encoder calculates the corresponding number

of emitted spikes via (5). By encoding and transmitting the
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Fig. 1. Our proposed NICE compression system tailored to RGB images. Each channel is filtered by the RIF and then sampled by the spike-based encoder.

number of spikes to the spike-based decoder, it is possible to

approximate the time delay each spike was emitted via the

inverse function, h−1. Then, a reconstruction is obtained for

the intensity of each pixel, Ãj , using (6). According to [13],

the RIF constitutes a frame, thus we can apply the inverse RIF

transform to the group of the quantized RIF layers in order to

reconstruct an approximation of each color channel, f̃R, f̃G
and f̃B , and to this extend an approximation of the input RGB

image, f̃ .

A. Rate Calculation

To evaluate the performance of our proposed NICE com-

pression system we employ the Shannon entropy, H , for

calculating the number of bits per pixel,

H =
1

m

m
∑

j=1

Hj , (7)

Hj = −

Nj
∑

k=1

P (k) log2 P (k) , j = 1, . . . ,m , (8)

where P is the probability mass function of the number of

spikes k that correspond to each layer. Throughout this paper,

the entropy is given in bits per pixel.

B. Quality Metrics

Two famous FR-IQA metrics are used to evaluate the quality

of the reconstructed image; the peak signal-to-noise ratio

(PSNR) (10) and the structural similarity index (SSIM). For

an RGB image, the PSNR is given by

PSNR(f, f̃) =
1

3
(PSNRR + PSNRG + PSNRB) , (9)

where the PSNR of each color channel c ∈ {R,G,B}, is

defined by

PSNRc = 10 log10
2552

MSE(fc, f̃c)
, (10)

MSE(fc, f̃c) =
1

n

n
∑

i=1

‖fc(xi)− f̃c(xi)‖
2 . (11)

Since the proposed architecture is based on neuroscience

models, we also employ the SSIM (12), which is considered

to be a more accurate visual perception quality metric, defined

by

SSIM(f, f̃) =





2µfµf̃
+ c1

µ2

f
+ µ2

f̃
+ c1









2σfσf̃
+ c2

σ2

f
+ σ2

f̃
+ c2





(

σ
f,f̃

+ c3

σfσf̃
+ c3

)

,

(12)

where µf and µf̃ denote the average of f and f̃ , respectively,

σ2
f and σ2

f̃
are the variances of f and f̃ , and σf,f̃ is the

covariance of f and f̃ . The constants c1 = k1L
2, c2 = k2L

2

and c3 = c2/2 are positive numbers used to stabilize the

division with a weak denominator, where L is the dynamic

range of the pixel values and k1 = 0.01, k2 = 0.03.

However, the performance of the FR-IQA metrics is ques-

tionable for several reasons. First, in real-life applications, it is

impossible to provide the receiver with the ground truth signal.

The only available information is the distorted image to be

assessed. Furthermore, although widely used, the FR-IQA are

inconsistent with the human visual perception. Thus, the blind

reference-less image spatial quality evaluator (BRISQUE) [11]

has been also used in this work to evaluate the capacity of

the neuro-inspired compression architecture according to the

natural scene statistics that appear in the spatial domain.

IV. EXPERIMENTAL EVALUATION

In this section we compare the performance of the proposed

NICE system with the state-of-the-art JPEG standard, in terms

of the rate-distortion tradeoff, for a set of images obtained

from the ImageNet database. In addition, an edge detection

algorithm is employed to demonstrate the fact that, when the

entropy is very low (i.e., the distortion of the reconstructed

image is high), the NICE system is capable of extracting the

meaningful information content from an RGB image, which

is reflected in the precise description of the contours in the

input scene. MATLAB was used to generate the distinct JPEG
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Fig. 2. Performance comparison of the proposed NICE system against JPEG.
BRISQUE is used as a NR-IQA. The NICE scores are lower than the JPEG
scores meaning that the perceptual quality is better in the proposed neuro-
inspired compression architecture.

qualities with the built-in function imwrite which allows

us to create and write .jpeg files of 100 different qualities.

Subsequently, the calculation of the number of bits per pixel

for each different quality is carried out using the built-in

function iminfo.

Fig. 3 shows the reconstruction results for the proposed

NICE system and the JPEG standard for low and high dynamic

images. Although for similar bpp values the two quality FR-

IQA metrics (PSNR and SSIM) are higher for JPEG (currently,

the reconstructed images using NICE present a decrease in

the dynamic range yielding darker images), however, it is

generally admissible that such quality metrics are typically

inconsistent with the human visual perception. For this reason,

we compare in Fig. 2 the performance between the proposed

NICE and the JPEG using the BRISQUE metric. BRISQUE

quality scores are typically between [0,100]. The lower the

score is, the better the perceptual quality of the image. In

addition, special attention has been paid recently towards

investigating new perceptual metrics capable of evaluating

the visual quality of an image in accordance to the human

visual system. Motivated by this, we employ an edge detection

algorithm based on the Sobel filter as an indirect way to

evaluate the performance of our proposed compression system.

Nevertheless, edge detection is a critical step in several

tasks, such as segmentation, classification, etc. The edge

detection results illustrate the superiority of NICE in better

preserving the meaningful information content of an RGB

image yielding an enhanced detection and description of the

contours in the image. This is in contrast to JPEG, whose

blocking artefacts effect, especially for very low bpp values,

deteriorates the performance of the edge detector.

V. CONCLUSIONS

In this work, we proposed a neuro-inspired compression

system tailored to RGB images. Specifically, a retina-inspired

filter was employed, combined with spike-based compression

mechanisms to design an integrated encoding/decoding sys-

tem. The performance of the proposed NICE compression

method was compared against the JPEG standard, in terms

of the rate-distortion tradeoff using both FR-IQA (PSNR and

SSIM) and NR-IQA (BRISQUE) quality metrics. Furthermore,

we suggested the use of edge detection (based on the Sobel

filter in this study) as an indirect way to demonstrate the

superiority of NICE in better describing the meaningful in-

formation content of RGB images, yielding increased edge

detection accuracy, as opposed to JPEG, especially for low

bpp values.

As a future work, we are interested in demonstrating the

increased efficiency of the NICE system against the state-of-

the-art compression standards in more complex tasks, such

as image classification. According to the experimental results

presented herein, we envision that our neuro-inspired compres-

sion scheme will yield an improved performance compared

with the existing image compression standards, when coupled

with pre-trained convolutional neural network architectures.
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Fig. 3. Visual inspection of the reconstruction performance using NICE and JPEG applied to RGB images. (a)-(d) proposed NICE system; (i)-(k) JPEG
standard. (e)-(h) and (m)-(p) correspond to the edge detection output from the NICE-based reconstructions and the JPEG-based reconstructions, respectively
(set of parameters: R = 1000 Ω, C = 1 F, T = 100 msec, θ ∈ [100000, 400000], Sobel factor = 0.4).
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