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Abstract—Automatic fall detection for the elderly is one of the
most important health-care applications since it enables a rapid
medical intervention preventing serious consequences of falls.
Wrist-worn fall detectors represent one of the most convenient
solutions. However, power consumption has a notable impact on
the acceptability of such devices since it affects the size and weight
of the required battery and the rate of replacing/recharging it. In
this paper, an acceleration-based fall detection system is proposed
for wrist-worn devices. It consists of two stages. The first one
is a highly-sensitive low computational complexity algorithm to
be embedded in the wearable device. When a potential fall is
detected, raw data are transmitted to a remote server for accurate
analysis in order to reduce the number of false alarms. The
second stage algorithm is based on machine learning and applied
to highly discriminant features. The latter are selected using
powerful feature selection algorithms where the input is 12 000
features extracted from each entry of a large activity dataset. The
proposed system achieved an accuracy of 100% when evaluated
on a 2400-file dataset. Moreover, the feasibility of the proposed
system has been validated in real world conditions where it has
been realized and tested using a smart watch and a server.

Index Terms—fall detection, machine learning, elderly health-
care, wearable sensors, feature selection.

I. INTRODUCTION

A notable demographic shift has been evaluated by the
World Health Organization (WHO) [1] where the number of
people older than 60 years is expected to exceed the number
of children younger than 5 years by 2020. This problem leads
to major challenges to the health systems in all countries
worldwide [1]. In a related context, WHO also showed that
an average of 100 000 falls that require medical intervention
occur every day worldwide and, as expected, the majority of
fatal falls occur with people older than 65 years [2]. Therefore,
automatic fall detection for the elderly is one of the most
important health-care applications since it enables a rapid
medical intervention and thus prevents serious consequences
of falls. Thanks to the new technology of microscopic de-
vices, namely Micro-Electro-Mechanical Systems (MEMS), a
multitude of small-size light-weight wearable fall detectors
have been developed over the last two decades. These devices
use MEMS-based accelerometers, gyroscopes, magnetometers
and/or barometers to capture the activity of the user. Waist-
mounted fall detectors have shown high performance levels
in the last years. Even using only an accelerometer, highly-
accurate low-complexity solutions have been proposed in the
literature. For instance, in [3] local binary features have been
proposed to discriminate between falls and Activities of Daily
Living (ADLs). These features were used to train several types
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of classifiers. Thanks to the small size of feature space, an ef-
ficient implementation was proposed where the trained model
was not required in the embedded algorithm but a table that
contains all the possible feature/response pairs was embed-
ded instead. This algorithm achieved an accuracy of 99.65%
with extremely low computational complexity [3]. Recently,
two machine learning-based algorithms for acceleration-based
waist-mounted fall detectors have been proposed in [4], both
achieving an accuracy greater than 99.9% when evaluated on
a large open dataset. This superior accuracy has been satisfied
with quite low computational complexity which enables a fall
detector to work for years with a 1000 mAh-battery. The main
reasons underlying the high performance of waist-mounted
fall detectors is that the waist is a good place to capture
the activity of the user since it is close to the center of the
body mass and the device could be tightly fixed in order to
avoid oscillations. In spite of their perfect performance, waist
devices could not easily accompany the elderly in any place,
such as under shower, in bed, ...etc. Therefore, alternative
positions have been considered by researchers. Among the
alternatives, the wrist is one of the most acceptable positions.
Recently, Quadros et al. [5] have proposed an algorithm for
wrist-worn fall detectors with an accuracy of 99.0%. Using
an accelerometer, gyroscope and magnetometer, the orientation
of the fall detector is estimated using Madgwick sensor fusion
algorithm [6]. The extracted features are based on Euler angles
that represent the orientation of the fall detector with respect
to the Earth frame and the rest of features are extracted
from vertical acceleration, velocity and displacement that also
require estimating the orientation of the device. The classifier
that shows the aforementioned result is k-NN. Despite the
impressive accuracy of this algorithm, its complexity could
considerably limit the battery life of a wearable fall detector.
The complexity includes: 1) the hardware complexity due to
the need for three sensors, 2) the need for fusion algorithm and
3) the complexity of the classifier where making a decision
using a k-NN classifier requires calculating the distances
between the extracted features vector and all the stored training
vectors [4].

Power consumption of a wearable fall detector has a consid-
erable impact on its acceptability for the following reasons:
1) the need for replacing/recharging the battery decreases
with lower power consumption and 2) using small batteries
enables producing small-size light-weight fall detectors. In
order to minimize the power consumption, two factors are
to be considered: (i) the computational complexity of the
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embedded algorithm should be low and (ii) since the power
consumption of accelerometers is very low (few pAh) espe-
cially in comparison with gyroscopes [7], acceleration-based
solutions are to be preferred. To this end, the objective of
the current work is to investigate the feasibility of detecting
falls using only an accelerometer in a wrist-worn device. The
strategy proposed to tackle the aforementioned problem is to
describe acceleration signals of falls and ADLs using a large
number of features and then to apply a variety of feature
selection methods to discover the most discriminant features.
In order to decrease the computational load on the wearable
device, feature extraction will be executed on a remote server
only when a potential fall is detected by the wearable device
as will be explained later.

Feature selection methods could be divided into filters, wrap-
pers and embedded methods [8]. Wrappers and embedded
methods employ a predictor to select the features while
filters select features without optimizing the performance of a
predictor [8]. The difference between wrappers and embedded
methods is that the former use the predictor as a black
box while in the latter, feature selection is involved in the
training process. In this paper, the considered wrappers are:
feature ranking based on individual feature performance using
a logistic regression classifier, Sequential Forward Selection
(SFS) [9] and Sequential Backward Floating Selection (SBES)
[10]. Note that the considered criterion to be maximized in
both SFS and SBFS is the classification accuracy of a linear
SVM classifier evaluated using 10-fold cross validation. The
considered embedded methods are: Support Vector Machine
based on Recursive Feature Elimination (SVM-RFE) [11],
stepwise multi-linear regression, random forest and Neigh-
borhood Component Feature Selection (NCFS) [12]. The
considered filters are: feature ranking based on correlation co-
efficients, feature ranking using Fisher ratio and the minimum
Redundancy Maximal Relevance method (mRMR) [13].

In the next section, we explain the challenges of detecting
falls using acceleration-based wrist-worn devices before ex-
plaining the proposed methodology in Section III. Experimen-
tal results are described in Section IV before giving conclusion
in Section V.

II. CHALLENGES WITH ACCELERATION-BASED FALL
DETECTION USING WRIST-WORN DEVICES

Capacitive MEMS accelerometers are widely used in the
context of fall detection thanks to their low cost, small size,
light weight and low power consumption. Moreover, they can
measure static accelerations contrary to the AC accelerometers
like e.g. piezoelectric ones. For these reasons, the focus in this
work is on capacitive MEMS accelerometers.

The measured tri-axial acceleration a in the sensor frame
represents a vector combination of the dynamic acceleration
a’ caused by the body movement and the gravity acceleration
g ie. a = a’ + g. Theoretically, the measured acceleration
represents the center of a unit sphere (the radius is one
gravity unit) while the dynamic acceleration could be any
point on the surface of this sphere. Figure 1.a illustrates
the sensor coordinate frame while Figure 1.b illustrates an
example of the aforementioned ambiguity. Separating a’ and
g could be quite useful for fall detection because each of them

(a)

Fig. 1. A wrist-worn fall detector: a) the senor coordinate frame, b) an
example illustrating the relationship between the measured, dynamic and
gravity accelerations

could carry important indicators for falls. However, it is a
demanding task as it requires a gyroscope and a sensor fusion
algorithm like in [5]. On the other hand, working directly
with the measured acceleration is a challenge because of the
ambiguity discussed above. So, our objective is to use only the
measured acceleration, a, in order to discover features that can
discriminate between falls and ADLs.

III. METHODOLOGY
A. Motivation

The presence of a high acceleration peak followed by
inactivity is a strong indicator to detect falls [3]. However,
it is not sufficient to avoid false alarms. For instance, laying
down on a bed could easily satisfy the aforementioned sit-
uation. Therefore, sophisticated features should be extracted
from acceleration signals in order to achieve an accurate
solution. Studies on time series analysis in different application
fields generally result in thousands of useful features. For a
challenging problem like acceleration-based fall detection for
wrist-worn devices, investigating the feasibility of employing
these features is attractive. Thanks to the recent MATLAB
tool, hctsa [14], [15], an automatic massive feature extraction
could be applied to any time series. More than 7.700 time
series features that encapsulate several decades of research in
feature extraction could be employed. In our strategy, both of
the last massive-feature-based solution and the simple low-cost
criteria mentioned above are exploited.

B. The proposed fall detection algorithm

The activity of the user is captured using a 3-axial ac-
celerometer built in the wrist-worn device. In order to analyze
the acceleration signal during a sufficient period, the latter
is buffered in a 3-second sliding window. More precisely,
given that a = [a, a, a,] denotes the acceleration, a, and

lall = /a2 + a2 + a2 are buffered in the 3-second window

A € R?**3fs where f, denotes the sampling frequency. We
only consider a,, and ||a|| since these signals are not affected
when the device rotates around the wrist, recalling that a,
corresponds with the axis of the arm as shown in Figure 1.a.

The choice of the sliding window length is based on the
time structure of falls. Indeed, falls consist of three phases
namely pre-fall, critical and post-fall phases [16] as illustrated
in Figure 2 where we represent the acceleration of a forward
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Fig. 3. Flowchart of the proposed fall detection system

fall caused by a stumble while walking. The critical phase
includes a free fall followed by an impact when the body
hits the ground and then an adjustment until the body takes
its final position. Thus, at some instant of activity monitoring
using overlapped windows, the sliding window captures all of
the three phases of fall.

The proposed strategy is to detect falls in two stages as shown
in Figure 3. The first one is a threshold-based algorithm to be
embedded in the wearable device. This algorithm is designed
to satisfy two objectives: 1) low computational cost in order
to minimize the power consumption of the wearable device
and 2) highly sensitive fall detection. When a fall is detected
using this algorithm, the buffered acceleration A is sent to
a remote server that performs machine learning-based fall
detection where the objective is to minimize the number of
false alarms. Both stages are discussed hereafter.

The embedded algorithm: as illustrated in Figure 3,
lla|| Vi € [fs,2fs] is compared with a predefined threshold
Ty in order to detect the presence of an impact. If an impact
is detected, the signal in the post-fall phase is inspected in
order to detect inactivity. Particularly, the sum of variance of
la|® and a\” Vi € [2f,,3f,] is compared with a predefined
threshold 7T5. If inactivity is detected, the buffered acceleration
A is sent to a remote server for further analysis.

The machine learning-based algorithm: in order to minimize
the number of false alarms, features of higher discriminant
power are required. Such features are to be extracted from A
on the remote server. The question is: what are those features
to be used in the machine learning-based algorithm? The pro-
posed strategy is to perform a massive feature extraction using

hctsa as introduced in III-A and then to select the smallest
set of features that satisfy the maximum attainable accuracy.
To implement the aforementioned strategy, we recorded 2400
activity signals from 7 subjects. These activities covered a
variety of ADLs and simulated falls (further details on the
dataset are explained in Section IV). From each activity signal,
12 000 features were separately extracted from a, and |a||.
Let B € R?400x12000 denotes the set of all the extracted
features. Using 10-fold cross validation, the input of a feature
selection algorithm is a subset B, C B Vi € {1,...,10}
where the dimensions of B are 2160 x 12000. For com-
prehensive feature selection analysis, 10 methods have been
considered including embedded methods, wrappers and filters
as mentioned in Section I. The minimum set of selected
features that satisfy 100% of accuracy has been chosen for the
machine learning-based algorithm. When the server receives
A, it extracts the pre-defined set of most relevant features.
These features represent the input of a trained linear SVM
classifier. When the latter detects a fall, an alarm is sent to an
authorized party as shown in Figure 3.

The performance of the considered feature selection algo-
rithms, the predictive power of the extracted features and
the performance of the proposed algorithm in a real world
application are explored in the next section.

IV. EXPERIMENTS

For training and performance evaluation, 7 young adults
(4 males and 3 females) were asked to perform 19 types
of ADLs and to simulate 35 types of falls. These activi-
ties were recorded using a wrist-worn data-logger equipped
with a 3-axial accelerometer. The latter is a DC capacitive
MEMS accelerometer. Its measurement range is +8 g and the
sampling frequency is f; = 238 Hz. Raw acceleration data
were segmented into 2400 files (608 falls and 1792 ADLs).
The considered performance criteria are accuracy, specificity
and sensitivity [3], [4]. Note that the specificity is inversely
proportional to the false alarm rate.

A. Analyzing the classification performance with a small set
of features

In order to show the discriminant power of a small set of
features, the top ranked three features selected using the SVM-
RFE method are discussed in detail. The features, denoted as
F1, F2 and F'3, are extracted from a,. Figure 4 shows how
these features are extracted where an example of a backward
fall occurred while walking and caused by a slip is considered.
Feature F'1 represents the discrepancy between the uniform
distribution fitted to a, and the kernel-smoothed distribution
of the signal a, denoted as fj,(u) where h represents the
bandwidth of the scaled normal kernel used for smoothing.
This discrepancy is measured as the distance between the left
edge of the uniform PDF and the argmax,, f(u) as illustrated
in Figure 4.a. Features F'2 and F'3 are extracted from the
standardized acceleration a,. In order to extract the feature F'2,
the 3-second sliding window is divided into 5 sub-windows.
The local sample entropy of a, is calculated for each sub-
window resulting in a vector s = [s1 3 s3 S4 S5]. Now, feature
F2 is calculated as the standard deviation of s as illustrated
in Figure 4.b. Thus, F'2 is a measure of stationarity of a,. In
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Fig. 5. The discriminative power of the top three features selected using SVM-RFE. Violin plots of features F'1, F'2 and F'3 are illustrated in (a),(b) and
(c), respectively. Sub-figure (d) illustrates a 3D representation of the falls and ADLs as well as the separating hyperplane achieved by a quadratic SVM.

a similar manner, F'3 is extracted by dividing the 3-second
sliding window into 7 sub-windows and calculating the local
features d; = |max(d§f)) — | min (a&”) ,Vie{1,2,...,7},
as illustrated in Figure 4.c. Thus, F'3 reflects the variation of
local maxima and minima across a,. The individual discrim-
ination performance of features F'1, F'2 and F'3 is illustrated
in Figures 5.a,b and c, respectively where violin plots show
the distribution of the aforementioned features when extracted
from falls and ADLs. From these violins, it is clear that none
of these features is sufficient to discriminate between falls and
ADLs. However, when considering a combination of these
features, a quadratic-kernel-based SVM is able to separate
the two classes with an accuracy of 92.35% as illustrated in
Figure 5.d. More precisely, a 10-fold cross validation is applied
to evaluate the performance of the aforementioned SVM
classifier. The resulting accuracy, sensitivity and specificity
are 92.35%, 96.25% and 80.78%, respectively. A linear SVM
shows comparable results i.e. 91.58%, 95.31% and 80.56% of
accuracy, sensitivity and specificity, respectively, as shown in
Table I. These results show that higher dimensional features
are needed basically to improve the specificity.

B. Analyzing the classification performance as a function of
the number of selected features

The performance of the 10 feature selection algorithms
considered in this paper is evaluated as a function of the
number of selected features as illustrated in Figure 6. For
each method, the number of selected features varies from 1 to
min (300, sizeof(S;)) where S; is the total number of the se-

lected features using the ¢-th method. A 10-fold cross-validated
linear SVM classifier is used to evaluate the performance of
the selected features. Figure 6 shows that embedded methods
display superior performance in comparison with wrappers
and filters. Particularly, SVM-RFE presents the best result
achieving a classification accuracy of 100% using the top 121
features, recall that the total number of extracted features is
12 000. The other methods show lower quality especially in
terms of specificity as shown in Figure 6.

The top 121 features selected using SVM-RFE are based
on entropy and mutual information, correlation, stationarity
analysis, model fitting and spectral analysis. Explaining these
features in detail is out of the scope of this paper. The
last result satisfies the objective of this work where the
problem of acceleration-based fall detection using wrist-worn
devices is solved with 100% accuracy. It is also clear from
Figure 6 that a trade-off between the classification accuracy
and the number of selected features could be controlled in
order to reduce the complexity of extracting features. Table
I shows some interesting levels of the performance of top
features selected using SVM-RFE. For instance, using the top
30 features, all performance criteria exceed 98%. However,
this accuracy/complexity trade-off is not necessary as feature
extraction is executed on a remote server which is able to
calculate the 121 features rapidly.

C. Proof of Concept

The proposed first-stage fall detection algorithm was im-
plemented in Java using Android Studio IDE and embedded
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TABLE I
PERFORMANCE OF A LINEAR SVM CLASSIFIER APPLIED TO THE TOP
FEATURES SELECTED USING SVM-RFE

T — 3 10 20 30 40 50 121
Accuracy % 91.58] 95.75| 97.71| 98.42| 98.83| 99.50| 100
Sensitivity % || 95.31] 97.32] 98.27| 98.55] 99.10| 99.67| 100
Specificity % || 80.56] 91.10] 96.05| 98.02] 98.02] 99.01| 100

in Huawei Watch 2. It is a smart-watch running Wear OS, a
modified version of Android OS for wearable. The algorithm
used the IMU which is a LSM6DS3 where the acceleration
range is set to +£8 g and the sampling frequency is 53
Hz. The proposed second-stage fall detection algorithm was
implemented in MATLAB and installed on a server running
a 64-bit Linux Debian Jessie 8 operating system on an Intel
Xeon Processor 2.1 GHz and 16 GBytes of RAM. The system
was tested by one subject where 5 types of ADLs i.e. walking,
sitting down, standing up, laying down and rising up were
performed and 4 falls in different directions were simulated.
All falls were detected while no false alarm was generated.
This validates the perfect accuracy of the proposed solution.

V. CONCLUSION AND FUTURE WORK

In this paper, the feasibility of detecting falls using a wrist-
worn device that acquires the users’ activities with only an
accelerometer has been investigated. The problem of finding
a set of features that can accurately discriminate between falls
and ADLs has been tackled. Starting from a dataset of 2400
files, 12 000 features have been extracted from each file. They
have been used as an input for a multitude of feature selection
algorithms. SVM-RFE succeeded to reduce the number of
features to 121 while keeping the best accuracy. The proposed
fall detection system consists of two stages. The first represents
a low complexity highly-sensitive algorithm to be embedded
in the wearable device. When this algorithm detects a fall, it
sends raw data to a remote server for further accurate analysis.
Particularly, the 121 more discriminant features are extracted
and supplied to a trained SVM classifier that predicts the class
of the activity. The proposed system achieved an accuracy
of 100% and its performance has also been validated in real
world conditions. Currently, the system subjects to a long-term
test where the objectives are to evaluate the average power
consumption of the embedded algorithm and to evaluate the
average number of events per day where accurate analysis is

required by the server. In a future work, the feasibility of
tackling the same problem using low complexity features will
be investigated in order to develop a standalone fall detector.
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