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Abstract—In order to efficiently perform inference on high-
dimensional nonlinear non-Gaussian state-space models using
particle filtering, it is critical that particles are generated from
the optimal proposal distribution. However, finding a closed-
form to the optimal proposal proves to be difficult in practice,
as many application problems do not satisfy the requirement
of conjugate state and observation equations. In this paper,
we overcome this challenge by designing a novel method that
introduces conjugate artificial noise into the system and optimally
perturbs the particles in a way that balances a bias-variance
tradeoff. Our method is validated through extensive numerical
simulations applied to a gene regulatory network problem, and
results show better performance than that of state-of-the-art
methods, especially in cases where the state noise is heavy-tailed.

I. INTRODUCTION

State-space models (SSMs) are a popular class of math-
ematical models used to relate observed data to a set of
hidden state variables. These models are used in a variety
of fields, including epidemiology, genetics, finance, ecology
and signal processing [1]–[4]. SSMs are characterized by: (i)
a state equation that describes the dynamics of the latent
states through some system transition function, and (ii) an
observation equation, which relates the latent states to the
observed data through a measurement function. A typical
state estimation problem within the SSM framework is often
presented in a Bayesian setting, where the goal is to compute
the posterior probability distribution of the latent states given
the set of available observations.

In the special case that the state and observation equations
are linear and Gaussian, Kalman filtering (KF) provides the
optimal closed-form solution to the state estimation problem
[5]. Unfortunately in many applications nonlinearities can
appear in both the transition and measurement functions.
In such cases, approximate KF methods can be employed.
For example, the extended KF (EKF) method utilizes a first
order Taylor approximation to linearize the system [6]. For
highly nonlinear systems, the unscented KF (UKF) technique
achieves better performance than EKF by propagating a set
of representative sample points that capture the mean and
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covariance of the posterior distribution at each time instant
[7]. However, the performance of these methods heavily relies
on the assumption that the system noise is Gaussian.

Particle filtering (PF) methods provide a flexible alterna-
tive approach to nonlinear and non-Gaussian SSMs. In these
methods, the posterior density is approximated using a discrete
random measure formed by a set of samples, called particles,
and weights. The methodology is based on a Monte Carlo
scheme called sequential importance sampling, that sequen-
tially propagates a set of particles using a proposal density
and then assigns weights to the particles proportionally to how
well they represent the target posterior [8], [9]. For example,
the famous bootstrap filter uses the state equation to propagate
the particles. In high-dimensional state-spaces, the choice of
proposal becomes critical and methods that do not use any
information about the observations for propagation, such as the
bootstrap filter, perform poorly. Ideally, a PF algorithm would
use an optimal proposal distribution, which optimally incor-
porates information about the observations in the propagation
step [10]. Unfortunately, a closed-form solution to the optimal
proposal is only attainable for models with conjugate state and
observation equations. As a result, the design of PF algorithms
that can scale to high-dimensional state-spaces regardless of
the distributions of the state and observation equations is a
highly active area of research.

In this work, we propose a novel PF scheme that scales
the state estimation of nonlinear and non-Gaussian SSMs
to high-dimensional systems. To do so, we consider the
approximated model introduced in [11] that biases the filtering
problem through the addition of artificial noise. We derive the
optimal artificial noise covariance matrix that minimizes the
average Kullback-Leibler divergence (KLD) between a set of
transformed particles and the observed data, while penalizing
perturbations in instances when the PF is performing well.
Finally, we apply the novel method to a gene regulatory
network problem and conduct extensive simulations.

II. PRIOR WORK

We consider a general state-space model of the form:

xt = f(xt−1,ut), ut ∼ p(ut),
yt = Hxt + vt, vt ∼ N (0,R),

(1)
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where xt ∈ Rdx is a state vector, yt ∈ Rdy is a vector of
observations, f(·) is the system transition function, ut and vt
are noise vectors, p(ut) is the distribution of the noise vector
ut, H ∈ Rdy×dx is the observation matrix, and t denotes a
time index. Although in our setting the observation equation is
linear and Gaussian, the transition equation may be nonlinear
and non-Gaussian. The goal is to approximate p(x1:t|y1:t), the
posterior distribution of the states given the observations.

In [11], Wigren et al. introduce a bias to the model in (1)
by approximating the SSM of interest as follows:

x̃t = f(xt−1,ut), ut ∼ p(ut)
xt = x̃t + ξt, ξt ∼ N (0,Λt)

yt = Hxt + vt, vt ∼ N (0,R).

(2)

This formulation introduces an artificial noise process,
whereby the latent state vector is perturbed using a Gaussian
distribution with covariance matrix Λt. We call the distribution
p(xt|x̃t) = N (xt|x̃t,Λt) the perturbation distribution. If Λt

is non-zero and positive semidefinite, then this model intro-
duces a bias. At each time instance t, a proposal distribution
q(x̃t,xt|xt−1,yt) is used to propagate a set of weighted
particles Xt−1 = {x(n)

t−1, w
(n)
t−1}Nn=1, where w(n)

t−1 is the weight
of the nth particle stream x

(n)
1:t−1. In general, the update rule

for the weights of the nth particle stream is
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where x̃
(n)
t ∼ p(x̃

(n)
t |x

(n)
t−1) and x

(n)
t ∼ q(x

(n)
t |x̃

(n)
t ,yt).

Since the numerator in (4) represents a Gaussian conjugate
pair, q(x(n)

t |x̃
(n)
t ,yt) can be chosen as the optimal proposal

N (x
(n)
t |m

(n)
t ,Ct) where m

(n)
t and Ct are given by
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(5)

Furthermore, the conjugacy allows for the particle weights
w

(n)
t = w

(n)
t−1p(yt|x̃

(n)
t ) to be obtained in closed-form

w
(n)
t = w

(n)
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(n)
t ,R + HΛtH

ᵀ). (6)

Unfortunately, there is no straightforward way to choose the
perturbation covariance matrix Λt. In [11] the form Λt =
ε2S is assumed, and some heuristic suggestions on how to
choose ε and S are discussed. However, no general procedure
for choosing Λt is established that is robust regardless of the
distributional assumptions on the state noises.

III. PROPOSED METHODOLOGY

In this work, we propose a robust particle perturbation
strategy for the proposed model in (2). Specifically, we derive
the optimal perturbation covariance matrix that minimizes
the KLD between the distribution of the perturbed particles
(projected to the space of the observations) and the observation
distribution. For robustness, we consider an objective function
that utilizes a regularization term which is calculated using the
performance of the unperturbed particles. The regularization
term guarantees that when the unperturbed particles perform
well, the particle perturbations are correspondingly decreased.

A. Average Kullback-Leibler Minimization

Consider the random variables z̃t = Hx̃t and zt = Hxt,
which are just linearly transformed versions of x̃t and xt, re-
spectively. We define the transformed perturbation distribution
of the nth particle as the distribution of zt given z̃

(n)
t

P
(n)
t = N (zt|z̃(n)t ,Φt), n = 1, . . . , N, (7)

where Φt = HΛtHᵀ ∈ Rdy×dy is the covariance matrix in
the transformed space. The observation distribution is St =
N (yt|zt,R). To measure the distance between distributions,
we utilize the KLD, denoted as DKL(·‖·). For any two proba-
bility distributions P and Q, DKL(P‖Q) is the expectation of
the logarithmic difference of the probabilities. To minimize the
distance between the perturbed particles and the observations,
we construct an objective function that averages the KLD
between each transformed perturbation distribution and the
observation distribution

Φ∗t = argmin
Φt�0

(
1

N

N∑
n=1

DKL(St‖P (n)
t )

)
, (8)

where the constraint Φt � 0 restricts Φt to the set of positive
semidefinite matrices. In the case that the underlying distri-
butions are Gaussian, the KLD has a closed-form expression,
which in turn yields the solution to (8) as

Φ∗t = R +
1

N

N∑
n=1

(z̃
(n)
t − zt)(z̃

(n)
t − zt)

ᵀ. (9)

However, evaluating Φ∗t requires knowledge of zt, which is
unknown. One solution is to replace zt with an estimate ẑt,
such as the average of the unperturbed transformed particles:

ẑt =
1

N

N∑
n=1

z̃
(n)
t . (10)

The approximated optimal solution then becomes

Φ∗t ≈ R + Σ̂t, (11)

where Σ̂t =
1
N

∑N
n=1(z̃

(n)
t − ẑt)(z̃

(n)
t − ẑt)

ᵀ is an unweighted
empirical estimator of the covariance matrix of the unperturbed
states z̃t. Asymptotically, the approximation to Φ∗t can be
seen as the sum of the transformed state and observation noise
covariance matrices.
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Given the solution in (11), we can compute the optimal
perturbation covariance matrix as Λ∗t = H−1Φ∗t (H

−1)ᵀ. In
the case that H is not full rank and the inverse does not exist,
we can instead use the Moore-Penrose inverse of H.

The purpose of using perturbations is to drive the set of
particles closer to the observations. However, in the case that
the particles are already tracking the latent states well, or the
observations are uninformative due to high noise, any pertur-
bations will introduce an unnecessary bias in the estimation
of the state. This lack of robustness for high observation noise
is resolved in the following section by the introduction of a
regularization term in the objective function.

B. Regularized Objective Function
To tackle high observation noise, there needs to be a way

of controlling the strength of the perturbations. Since the
magnitude of the perturbations rely on the eigenvalues of Λt,
we augment the objective function in (11) with a regularizer
that takes the eigenvalues of Φt into consideration. The new
objective function L with regularization parameter ρt is

L(Φt, ρt) = ρt log (detΦt) +
1

N

N∑
n=1

DKL(St‖P (n)
t ), (12)

where 0 ≤ ρt < ∞. The term ρt log (detΦt) penalizes
solutions with large determinants, thus penalizing large eigen-
values. Minimizing L(Φt, ρt) with respect to Φt yields the
following approximated optimal solution:

Φ̂∗t = argmin
Φt�0

(
L(Φt, ρt)

)
=

1

1 + ρt

(
R + Σ̂t

)
. (13)

Unlike the solution in (11), here the perturbation of the
particles can be controlled by the parameter ρt. As ρt →∞,
the solution in (13) approaches the null matrix, leading to no
perturbation of the particles.

C. Choice of the Regularization Parameter
An important concern is the choice of the regularization

parameter ρt. Large values of ρt are suitable for cases in which
the unperturbed particles are tracking the state efficiently, and
no perturbation of the particles is needed. On the other hand,
if the unperturbed particles are tracking poorly, setting ρt = 0
improves the performance by incorporating more information
about the observations.

To determine whether a particle filter is performing well,
the effective sample size (ESS) of the unperturbed particles
can be evaluated at each time instant. The ESS is a measure
of the degeneracy of the particle weights, which is related to
the performance of the PF scheme [12]. Consider the weight
r
(n)
t of the nth particle x̃

(n)
t under the case of no perturbation:

r
(n)
t = p(yt|x̃(n)

t ) = N (yt|Hx̃
(n)
t ,R). (14)

Given these weights, the ESS under no perturbation can be
approximated as follows:

ÊSSt =

(∑N
n=1 r

(n)
t

)2
∑N
n=1

(
r
(n)
t

)2 . (15)

The approximation in (15) has the property that 1 ≤ ÊSSt ≤
N . ÊSSt = 1 corresponds to the most extreme case of particle
weight degeneracy and thus implies that the unperturbed par-
ticles are not tracking the state well. The case that ÊSSt = N

implies r(1)t = r
(2)
t = · · · = r

(N)
t , mimicking the nature of true

Monte Carlo sampling. We propose a strategy for selecting ρt
based on the approximated ESS of the set of particles:

ρt = ÊSSt − 1, (16)

When the particle weights are degenerate, ρt = 0, resulting in
the largest perturbation of the particles.

D. Comments on Implementation

In high-dimensional scenarios, stable estimation of the
empirical covariance matrix Σ̂t requires many particles. To
stabilize the estimation, one can use a biased estimate of Σ̂t

by restricting to isotropic or diagonal matrices. These biased
estimates will have less variance than the full covariance
matrix, and thus will stabilize Φ̂∗t .

IV. SIMULATIONS

In order to validate the novel method, we run numerical
simulations on synthetic data generated from a SSM describing
the time evolution of gene expressions [13]. We considered a
network of dx genes, where xt = [x1,t, . . . , xdx,t]

ᵀ ∈ Rdx
denotes the vector of gene expressions at time instant t. The
state equation of the SSM is given as follows:

xt = Ag(xt−1) + ut, ut ∼ p(ut), (17)

where A ∈ Rdx×dx is a sparse coefficient matrix and
g(xt−1) = [g(x1,t−1), . . . , g(xdx,t−1)]

ᵀ ∈ Rdx is a vector of
nonlinear transformations applied to each gene expression as
determined by the following expression,

g(xi,t−1) =
1

1 + e−xi,t−1
, (18)

for i = 1, . . . , dx. The observation model is given by

yt = xt + vt, vt ∼ N (0, σ2
rIdx). (19)

Given a set of observations y1, . . . ,yT , our goal was to
estimate xt for t = 1, . . . , T . We considered two scenarios
for the experiment: (i) additive Gaussian state noise, and (ii)
additive heavy-tailed non-Gaussian state noise.

We note that all simulated datasets were based on the same
coefficient matrix A, which was randomly generated with 10%
sparsity and dx = 25 dimensions. The length of the time-
series simulated was T = 150. The results were averaged over
5000 runs where N = 50 particles were used for each of the
PF methods. Our performance metric was the cumulative sum
of the mean squared error (MSE) over time. For each of the
numerical simulations, we added a burn-in period of 50 time
steps to remove dependence of the MSE on the initialization
of the algorithm.
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Fig. 1: Gaussian noise (σ2
q = 10 and σ2

r = 1).
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Fig. 2: Gaussian noise (σ2
q = 1 and σ2

r = 1).
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Fig. 3: Gaussian noise (σ2
q = 1 and σ2

r = 10).
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Fig. 4: Student-t noise (ν = 1).

A. Additive Gaussian State Noise

We considered the state noise to be additive and Gaussian,
ut ∼ N (0, σ2

q Idx), and performed a comparative study by
varying the levels of state and observation noises. In particular,
we tested three cases: (a) high state noise (σ2

q = 10 and
σ2
r = 1), (b) moderate noise (σ2

q = 1 and σ2
r = 1), and

(c) high observation noise (σ2
q = 1 and σ2

r = 10). For each
case, we compared the performance of the novel method with
the following state-of-the-art methodologies: UKF, bootstrap
PF (BPF), auxiliary PF (APF) [14], and unscented PF (UPF)
[15]. We also compared each of the methods to PF with the
optimal proposal, which was attainable for this model.

Figure 1 shows the evolution of the cumulative MSE in
the high state noise scenario. In this case, the novel method
attains performance close to UPF and the optimal, while
the other methodologies accumulated a large error. In the
case of moderate noises, shown in Fig. 2, the novel methods
still perform close to UPF and the optimal and significantly

outperform the other methodologies. The results for the case
of high observation noise are shown in Fig. 3. In this scenario,
the observations are less informative of the ground truth,
so methods like UKF, BPF, and APF were able to attain
performance close to that of UPF and the optimal method.
These results emphasize why the novel methodology without
a regularization term performs poorly and a penalty on the
perturbations is necessary to attain good performance.

B. Additive Heavy-Tailed State Noise

Finally, we considered a heavy-tailed, additive multivariate
student-t state noise, ut ∼ tν(0, Idx), where ν corresponds
to the degrees of freedom. We simulated synthetic data under
the setting that ν = 1 (corresponds to Cauchy noise) and
R = Idx . We compared the performance of the novel method
with APF, UPF and the original conjugate artificial PF method
with arbitrary perturbations (CAPF) [11]. For the original
CAPF we assumed Λt = ε2Idx and tested different settings
for ε2: (a) ε2 = 1, (b) ε2 = 5, (c) ε2 = 10, and (d) ε2 = 25.
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Figure 4 shows the cumulative sum of the MSE averaged
over 1000 simulations. The results indicate that the novel
method outperforms APF, UPF and CAPF by several orders
of magnitude, which is consistent with the theory explained in
previous sections. Recall that in the case of Gaussian noise,
UPF was able to attain close to optimal performance for all
cases. Now, with heavy-tailed noise, the performance of UPF
is much worse. The sudden accumulations of MSE for APF,
UPF and CAPF can be explained by the methodologies’ lack
of robustness to tail events. Note that with the increase of ε2,
the performance of CAPF improves, but it never exceeds the
performance of the novel method. This highlights the main
advantage of the novel method, which is that it does not
require specification of artificial noise parameters, making it
more suitable for arbitrary problems.

V. CONCLUSIONS

In this work, we proposed a novel PF scheme which uses
penalized perturbations to improve performance for high-
dimensional systems. Simulation results indicated that the
proposed methodology outperforms state-of-the-art filtering
methodologies in high-dimensional scenarios for additive
Gaussian and additive student-t state noise.
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