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Abstract—The Overhead Power Distribution Lines present
a wide range of insulator components, which have different
shapes and types of building materials. These components are
usually exposed to weather and operational conditions that
may cause deviations in their shapes, colors or textures. These
changes might hinder the development of automatic systems
for visual inspection. In this perspective, this work presents a
robust methodology for image classification, which aims at the
efficient distribution insulator class identification, regardless of
its degradation level. This work can be characterized by the
following steps: implementation of Convolutional Neural Network
(CNN); transfer learning; attribute vector acquisition and design
of hybrid classifier architectures to improve the discrimination
efficiency. In summary, a previously trained CNN goes through a
fine tuning stage for later use as a feature extractor for training
a new set of classifiers. A comparative study was conducted
to identify which classifier architecture obtained the best dis-
crimination performance for non-conforming components. The
proposed methodology showed a significant improvement in
classification performance, obtaining 95% overall accuracy in
the identification of non-conforming component classes.

Index Terms—distribution insulators, convolutional neural net-
work (CNN), transfer learning, hybrid classifiers

I. INTRODUCTION

The conformity in electrical power supply is closely related
to the quality of the preventive and corrective maintenance ser-
vices, provided by power utilities companies, in the Medium
Voltage Power Lines (MVPL). As a prerequisite for perform-
ing these activities, the first step to be carried out is inspection.
It consists in the search and identification of non-conformities
present in the MVPL components, such as defective, polluted
and badly positioned elements. From the determination of
the type of component and its respective defect, it becomes
possible to act preventively on the electrical system [1].
These activities provide improvement of the supplied quality
(e.g. electric voltage in permanent regime) and reduce the
probability of power outages.

Nowadays, visual inspection activities in the Overhead
Power Distribution Lines (OPDLs) are performed by profes-
sionals trained by the utility company, in the modality of visual
inspection by “walking patrol” or assisted by helicopter [2],
[3]. These activities are based on empirical methods, where

these professionals point out components classes and presence
of defects in a visual and intuitive way. Most of the time,
they are performed with live circuits, which can bring risks
to these professionals safety [4], [5]. These activities are also
susceptible to subjective and heuristic interpretations, which
can lead to inaccurate or incorrect identification/diagnosis on
the inspection process, resulting in registration failures and
inadequate maintenance planning.

Therefore, it can be seen that there is still a latent need for
improvement in techniques for both component identification
and defect analysis in OPDLs. To this end, one approach
looks promising: development and implementation of auto-
mated/intelligent data acquisition and information analysis
techniques. The computer vision techniques can be explored
to reduce subjectivities inherent to current OPDL inspection
methods. As far as the authors’ knowledge, the use of intelli-
gent techniques for power systems inspection is a current but
a not yet very explored area. A recent literature review on this
topic can be found in [6].

In this work, the development of a methodology was initi-
ated intended to distribution insulators classification, through
the use of deep learning techniques and hybrid classifiers.
To this end, a sequence of activities was performed, namely:
insulators image acquisition; convolutional neural network
(CNN) [7], [8] fine-tuning from ImageNet database [9]; ex-
traction of 2,048 parameters belonging to ResNet-50 flat layer;
and second training with a new set of algorithms - Suport
Vector Machine (SVM) [10], k-Nearest Neighbors (kNN),
Random Forest [11] and Bayes Net. In the experimental
stage, the models were trained using datasets with intact
components and their respective performances were evaluated
with a database composed only of defective ones. At the end,
a set of performance metrics were evaluated for the proposed
techniques.

This research can be understood as a necessary step to
support the development of intelligent visual inspection sys-
tems for OPDLs, embedded in drones. At this early stage, it
becomes necessary to develop robust models that can discrim-
inate insulator classes, regardless of the non-conformity type
and degradation level. In a future step, the verification of the
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Fig. 1. Diagram of the proposed methodology for insulator classification.

robustness of these techniques in real-world environments will
be performed.

II. METHODOLOGY

The main steps of a pattern recognition system are data
acquisition, pre-processing, attribute extraction and pattern
classification [12], [13]. The different experimental approaches
used in the stages of the classification process will be de-
scribed. Figure 1 presents the flowchart of the procedures
proposed in this work.

A. Image acquisition

At the data collection stage, samples were obtained from
four types of insulators commonly used in 13.8 kV OPDLs
(see Figure 2). These components have different shapes and
building materials, listed as follows:

• Ceramic Insulators - Pin (CPI) and bi-color (CBI),
• Polymeric Insulator - Grey type (PGI),
• Glass Insulator - Green type (GGI).

For defective components, insulators samples were collected
containing different types of non-conformities, such as break-
age, fracture, deformation and color deviation caused by elec-
trical discharges. Figure 3 illustrates some examples. In a sec-
ond moment, a set of photos of the mentioned components was
collected in several angles and positions, totaling 1600 photos
of intact components (400 of each class) and 800 photos of
defective ones (200 per class). This step was performed in

(a) PGI (b) CPI (c) GGI (d) CBI

Fig. 2. Images samples of intact components (DATA-INT).

(a) Deformed (b) Fractured (c) Stained (d) Broken

Fig. 3. Image samples of defective components (DATA-DEF).

a research lab, with controlled lighting and background color.
We called DATA-INT the dataset formed by intact components
and DATA-DEF the dataset of defective ones (see Figures 2
and 3). Finally, for computational complexity reduction, the
images were resized to 224× 224 pixels.

B. Convolutional neural network architecture

The Residual Neural Network (ResNet) was introduced by
Kaiming [7]. These CNNs have Residual Units which facilitate
the training of very deep convolutional networks. A variation
of this model, with 152 layers, was the winner of the 2015
ImageNet Large Scale Visual Recognition Competition.

In this architecture, indicating the desired underlying map-
ping as H(x), instead of learning in a direct way, with few
stacked layers, these layers are permitted to fit into a residual
mapping. In other words, stacked nonlinear layers are allowed
to fit into another mapping of F (x) = H(x) − x. Then, a
new type of mapping is created, which can be expressed by
H(x) = F (x) + x, where F (x) and x represent the stacked
non-linear layers and the identity function, respectively. A
current review about this topic is present in reference [8].

ResNet-50 architecture was chosen as the base model for
the simulations. Figure 4 illustrates, in a simplified way, the
network architecture along with its Residual Units. Also, the
last layer of this CNN was replaced to represent the classes
belonging to the studied datasets. The activation function
chosen for the referred layer was the softmax type [14].

C. Transfer Learning

Transfer learning techniques are commonly used to re-
duce the computational cost and increase classification effi-
ciency [15], [16]. The chosen CNN was adjusted with learned
weights from the ImageNet competition dataset [9]. During
the fine-tuning of the network, the last dense layer was re-
trained and the rest of the network weights were frozen. The
Adam optimization method [17] was used with a low learning
rate (10−4) for adjustments to the datasets used.
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Fig. 4. Partial representation of the CNN ResNet-50 architecture.

D. Attribute Extraction

For this stage, the ResNet-50’s Xfc vector, illustrated in
Figure 4, will serve as an attribute generator for a new training
database. Each image inserted in the CNN will compose a new
set of 2048 parameters, used as input to the hybrid classifiers.

E. Hybrid classifiers

The use of hybrid classifiers was focused on the potential
performance gain provided by the combination of two or more
machine learning techniques [18]–[20]. In this research, deep
learning techniques were combined with traditional classifiers.
The pre-training CNN served as a first learning stage, provid-
ing attributes for training SVM, kNN, Bayes Net and Random
Forest algorithms. These techniques are briefly described as
follows.

a) Support Vector Machine (SVM): Support vector ma-
chine is a machine learning technique introduced in 1995
[10] that has been broadly and successfully applied in several
research fields [21], [22]. It aims at defining an optimal
decision boundary that best separates the classes under study.
This is achieved by determining the best separation hyperplane
through the minimization of the error probability of a given
training set. The SVM transforms the feature space into a
higher dimensional space through the use of kernel functions.

To be more specific, it is considered a training set defined
as zi which represents an nf -dimensional feature vector, with

ns samples, and defined yi ∈ {−1,+1} as a target value
indicating an i-th class. The solution is obtained finding
the Lagrange multipliers {αi}ns

i=1 that minimize the objective
function

Q(α) =
1

2
−

ns∑
i=1

αi +

ns∑
i=1

ns∑
j=1

αiαjyiyjK(zi, zj), (1)

subject to
ns∑
i=1

αiyi = 0, 0 ≤ αi ≤ C for i = 1, 2, . . . , ns, (2)

where C is a positive constant given by the user, and K(·, ·)
is a partially defined positive kernel function. If {αi}ns

i=1 is an
optimal solution of Equations (1) and (2), the decision function
is obtained as

βSVM (z) =

ns∑
i=1

αiyiK(zi, z) + b, (3)

where b is a bias parameter. A new data point is classified as
one of the classes according to the value of βSVM (z).

b) k-nearest neighbors (kNN): As an instance-based
learning model, kNN does not have a training step, since
the only parameter that is used is k, which is provided by
the user. Given a new observation x, the training set is re-
ordered by relative distance, Z = {‖z1 − x‖, ‖z2 − x‖, ...,
‖zns − x‖}, and this set is truncated to be of size k. The
respective y1, y2, . . . , yns are then aggregated into a frequency
vector fk for each class k, and the final prediction is produced
by majority voting, ŷi = maxk fk. Usually, Euclidean distance
(L2-norm) is used as the distance function. A successful
application of kNN for nondestructive evaluation is presented
in [23].

c) BayesNet (BN): BayesNet produces the probability
that a new observation x belongs to each class k, P (Y = k |x).
This posterior probability is computed from the Bayes Theo-
rem,

P (Y = k |x) =
P (Y = k)P (x |Y = k)

P (x)
. (4)

All these terms are learned from the training set z. The
denominator is just a scaling factor. P (Y = k) represents the
prior probability that the hypothesis is true based on what is
known from the population and P (x |Y = k) is the likelihood
which represents how compatible the evidence is with the
given hypothesis.

d) Random Forest (RF): Random forest is defined as a
classifier built from a collection of classification trees. It is a
concept of regression trees, induced by a bootstrap sampling
method of a training data set, using random descriptors se-
lected in the tree induction process. It is based on the idea
of bagging used to average noise and improve the variance
reduction by reducing the correlation between trees [11].

The main characteristic is that for the k-th tree in a
collection of trees, a random vector Θk is generated, with
statistical independence from other trees previous vectors,
Θ1,Θ2, . . . ,Θk−1, and with equal probability distribution. A
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tree is grown with the training set and the vector Θk, resulting
in a specific classifier for a given input vector. After a defined
number of trees is generated in this way, they vote for the
most popular class for a given input.

III. EXPERIMENTS

At the simulation stage, we organized the datasets into four
distinct classes:

• Class 1 - Polymeric Grey Insulator (PGI);
• Class 2 - Ceramic Pin Insulator (CPI);
• Class 3 - Glass Green Insulator (GGI);
• Class 4 - Ceramic Bi-color Insulator (CBI);
Five computational models were proposed for image clas-

sification. The first one was the pre-trained CNN ResNet-
50 (RN) and the remaining four were combinations of RN
with the algorithms kNN, SVM, BN and RF. The database
percentage split for the training, validation and testing steps
were arbitrated as follows:

• Training - 50% DATA-INT (800 samples);
• Validation - 50% DATA-DEF (400 samples);
• Tests - 50% DATA-INT and 100% DATA-DEF.

A. Performance metrics

For performance evaluation, two analytical tools were used:
the Receiver Operating Characteristic (ROC) curve and the
Confusion Matrix (CM). The CM is a table that allows visu-
alization of the learning algorithm performance. The matrix
columns represent the instances of a predicted class, while the
rows represent the cases of the actual (real) class. The main
equations used for CM estimation were presented in [24] and
are listed below:

• True Positive Rate (TPR):

TPR ≈
∑

True Positive∑
Condition positive

(5)

• False Positive Rate (FPR):

FPR ≈
∑

False Positive∑
Condition Negative

(6)

• Precision (Pr):

Pr =

∑
True Positive∑

Predicted Condition Positive
(7)

• Accuracy (Acc):

Acc =

∑
True Positive +

∑
True Negative

Total Population
(8)

The ROC curve is a two-dimensional graph where TPR
is plotted on the Y axis and FPR is plotted on the X axis.
The ROC chart describes the relationship between the benefits
(true positives) and the costs (false positives). Areas under the
ROC curve (AUC) close to one indicate high discrimination
performances. When the area is one the curve is flattened at
the top of the graph, corresponding to 100% sensitivity (TPR)
and 100% specificity (1− FPR).

ROC curve of PGI - AUC =  0.95
ROC curve of CPI - AUC =  0.96
ROC curve of GGI - AUC =  0.95
ROC curve of CBI - AUC =  0.92
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Fig. 5. ROC Curves for ResNet-50 DATA-DEF classification.

TABLE I
CLASS PRECISION FOR DEFECTIVE COMPONENTS.

CLASS RN RN + BN RN + kNN RN + SVM RN + RF

PGI 96% 97% 83% 95% 94%
CPI 83% 88% 95% 91% 91%
GGI 96% 100% 97% 100% 99%
CBI 69% 77% 96% 95% 88%

B. Results and discussion

The ROC curves presented in Figure 5 show the perfor-
mance of the different RN computational approaches, that
reached values close to the top of the graph and AUC above
0.9.

The overall classification accuracy of all models are pre-
sented in Figure 6. The RN + SVM configuration achieved
the best performance, with 95% Acc in the DATA-DEF
classification. For the precision values, shown in Table I, it
is possible to affirm that the hybrid configurations provided
substantial improvements. CBI’s precision reached 96%.

Table II presents the confusion matrix of the RN + SVM
model. The precision and sensitivity of the classes were greater
than or equal to 90%. However, 7.5% of the components
belonging to the CBI class had misclassification for CPI. We
can say that very aggressive defects in CBI (see Figure 7) can
generate classification errors from these two components. This
way, there is still room for classifiers optimization.

TABLE II
CM OF THE SVM MODEL FOR DEFECT INSULATOR CLASSIFICATION.

Predicted
PGI CPI GGI CBI

Actual

PGI 185 5 0 10 92.50%
CPI 5 195 0 0 97.50%
GGI 0 0 200 0 100%
CBI 5 15 0 180 90.00%

94.87% 90.70% 100% 94.74% 95.00%
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Fig. 7. CBI component samples that lead to misclassifications.

IV. CONCLUSIONS

This study presented a methodology for automatic classifi-
cation of ceramic, polymeric and vitreous power distribution
insulators through the use of a CNN ResNet-50 combined with
other intelligent algorithms. Insulator images were used as
inputs for classification. The ResNet-50 + SVM architecture
showed the best classification performance for the tested
hybrid configurations, achieving 95% overall accuracy in clas-
sification of the defective component type and approximately
100% for the non-defective ones. Another point of interest
in this work was the use of the ResNet-50 as an attribute
extractor. The 2,048 values extracted from the second-to-
last flattened layer of this CNN were able to provide useful
information for all the test classifiers. The CBI, for example,
showed an increase in precision of 27 percent points due to
the use of hybrid techniques. In future studies, we intend
to expand the types of insulators, inserting, for instance,
Pillar and Suspension types. It is also planned to evaluate the
efficiency of the proposed techniques for insulator images with
background interference from real Distribution Networks.
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