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Abstract—Automated subsurface mapping with data obtained
from Ground Penetrating Radar (GPR) is essential for the con-
struction services. So far, significant progress has been achieved
in this domain by integrating such sensors with robotic platforms
allowing large scale autonomous subsurface mapping. The paper
at hand tackles the challenging issue of self-localization of a
GPR antenna in a known subsurface map by utilizing solely
GPR measurements. This is achieved by isolating spatiotemporal
salient regions on consecutive GPR traces. These regions are
represented by utilizing the coefficients of the Discrete Wavelet
Transform (DWT) decomposition. Matched representations in-
dicate meaningful tracked regions on the GPR traces that
correspond to a fixed time window of data recording. Tracked
regions are encoded in the form a vector that is treated as an
observation within a particle filtering framework and is further
processed to estimate the GPR sensor pose, given (i) a known
subsurface map (ii) a simulated GPR model and (iii) priors in the
GPR motion model. The GPR antenna self-localization approach
has been assessed with real data and exhibited promising results,
proving the ability of the proposed method to perform subsurface
localization, exploiting only GPR sensor measurements.

I. INTRODUCTION

Recently, significant research endeavors have been applied
in the domain of automated subsurface modeling, boosting
the technological achievements in the multidisciplinary areas
of GPR scanning machinery [1], the GPR signal processing
for the detection of buried utilities [2], [3] and the automated
large scale subsurface mapping [4], contributing positively to
the assessment of underground utilities in urban environments,
the subsurface evaluation of energy and mineral production
operations, and search and rescue applications at disaster sites.

Subsurface mapping with GPR sensors produces essential
representations of the shallow surface providing topological
information of the existing infrastructures (e.g. buried pipes),
which can be utilized by humans or subsurface operating
mechatronic devices, in the form of a metric map. Authors in
[4] utilized a GPR antenna towed by a rover to create a coupled
surface/subsurface map by associating robot visual odometry
with GPR measurements. Similarly, authors in [5] created a
three-dimensional, photorealistic surface model coupled with
a ribbon of GPR data, and a two-dimensional GPR radargram
with the surface topography plotted on top of it. An important
limitation of these methods is that they require the existence of
the same surface sensing equipment (i.e. vision sensors, GPS,
etc.) in order to localize another GPR antenna that operates
in the same area, since the subsurface map is amalgamated

1 All authors are with the Centre for Research and Technology Hellas -
Information Technologies Institute (CERTH/ITI), 6th Km Charilaou-Thermi
Road, Thessaloniki, Greece, 57001
eskartad@iti.gr

Fig. 1. Models of the real (left) and simulated (right) GPR scanning
procedure.

with the surface one and, thus, subsurface localization derives
indirectly. This could benefit applications involving robotic
subsurface technologies or applications where robots with
GPR antennas operate in environments (e.g. mines) with
limited visual sensors and absence of GPS signal.

The closest solution to this problem is the work described
in [6]. The authors developed a dedicated Localization GPR
antenna (LGPR), which has been used in a priori-map-based
vehicle localization method, designed to complement existing
approaches with a low sensitivity to failure modes of LIDAR,
camera, and GPS/INS sensors, due to its low-frequency RF
energy. However, in this method the authors assumed as a
prior map the aggregated GPR measurements, rather than
classical metric maps and performed the localization based
on single correlations between the past and current raw GPR
measurements, exploiting also Particle Swarm Optimization
(PSO), as an optimization technique for fast convergence and
search space reduction. Contrary to this approach, our method
proposes a GPR sensor localization in a metric subsurface
map by exploiting only the GPR measurements -on which
signal processing is applied- to create comparative to the
metric map representations, allowing the pose estimation of the
antenna in the map, without the need of the same perception
equipment used during the initial mapping step. Moreover, the
proposed method relies on the symbolic representation of the
GPR measurements instead of the raw ones, utilizing signal
processing by means of the DWT decomposition to form the
salient regions representations. Most known methods used for
spatial representations of the inspected underground, either
deal with it as a typical vision detection problem, an image
focusing or a seismic migration problem. They are all applied
on B-scans and utilize the hyperbolic pattern that reflections
from a certain underground utility are expected to shape on the
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stacked A-scans1 [7]–[10]. Contrary to this, in our method, we
process each new trace on-the-fly and infer reflector locations
without any reference to long term past or future traces. From
another point of view, GPR signal is in general noisy and
requires pre-processing steps such as denoising, compression,
etc. The DWT is a powerful tool applied in such signal
processing domains proved suitable for the frequency analysis
of non-stationary signals, such as GPR signals. Successful
application of DWT for filtering and denoising purposes of
GPR data has been reported in [11], [12], while the authors
of [13] applied wavelet analysis so as to perform GPR data
classification.

II. GPR DATA PROCESSING

A. The model of a real GPR antenna

The first step of our method comprises the modelling of
the GPR profile construction process, to be later used in
the localization procedure. Planar antenna motion is assumed
(z = 0), defined by the Z-axis and the axis of GPR
movement (see Fig. 1). Along the scanning direction, an
electromagnetic stimulating pulse (usually a Ricker wavelet
[14]) is transmitted. The voltage magnitude induced at the
receiver is sampled over a specific time window. The recorded
signal is the result of reflections caused by alterations on
the electromagnetic properties of the inspected space and
constitutes an A-scan. Such alterations signify the existence of
an underground utility, underground clutter or even change on
the type of soil. Concatenated A-scans at consecutive sampling
positions form a B-scan. Let p[t] denote the stimulating pulse,
the received trace y[t] at a specific position is then modeled
by y[t] =

∑N
i=1 p[t− ti], where N corresponds to the number

of point reflectors lying on the YZ plane and ti corresponds to
the total round trip delay between the transmitter and the ith

reflector. Hence, the received trace is derived as an overlay of
multiple distinct time-shifted replications of the initial pulse,
each one originating from a point reflector. In this work,
planar reception is assumed for the signal modeling and all
scatterers are approached as independent point reflectors with
interactions between them being neglected. Underground soil
is considered as a lossless medium with conductivity equal
to zero. The equation above still manages to convey the
most important aspect of the GPR scanning procedure, i.e.
a formulation of the time delay of the received reflections.
Furthermore, by applying the d = (vm ·t)/2 formula, transfor-
mation from temporal to spatial reference is achieved, where
vm is the underground wave propagation velocity and the 1/2
factor accounts for the 2-way travel of wave:

y[t] =
N∑
i=1

p[t−
2 ·

√
z2i + (yi − yGPR)2)

vm
]

where (yGPR, 0) are the coordinates of the GPR position and
(yi, zi) are the coordinates of the ith point reflector.

1definition of A-Scan and B-Scan terms are provided in Sect. II-A

B. A-scan Segmentation
As shown on Sec. II-A a single GPR trace is a composition

of time-shifted instances of the initial excitatory pulse. This
pulse closely resembles to a Ricker wavelet, which is also
referred to as Mexican hat wavelet, a name indicative of
its waveform, that is centered around a positive peak value.
Reflection pulses appearing in an Ascan are expected to have
similar waveform. Therefore, positive peak values along the
recorded Ascan are indicators of the appearance of reflections
of the original pulse. Peak values of the recorded y[t] trace
are identified by transforming the y[t] recorded signal into
the frequency domain. Fast Fourier Transform is utilized and
j · ω · Y [ω] and −ω2 · Y [ω] formulas are applied to calculate
first and second derivatives. Finally, first and second derivative
checks and a sign check are applied to locate local maxima
positive values. It should be noted that most of these values
correspond to artifacts of the scanning procedure, underground
clutter, etc. and only few of them reflect the existence of actual
underground utilities.

For each peak a pulse of a predefined length, centered
around it, is extracted. The length of the extracted pulses is
defined in accordance to the central frequency Fs of the GPR
scanning device. Frequencies of reflections are expected to
fall symmetrically within a band centered around the central
frequency. A rule of thumb is to consider the width of the
band equal to 1.5 · Fs, specifically [0.25 · Fs, 1.75 · Fs]. The
low frequency of the band defines the largest expected duration
of a single reflection pulse in time, which is used to set the
predefined length of the extracted segments.

Fig. 2. Initial pulse and its reconstruction (Left) produced by the DWT vector
representation after thresholding (Right).

C. Salient Region Description, Matching and Tracking

Instead of forming specific 2D signatures (hyperbolas) over
multiple traces, in our proposed method much more relaxed
conditions are imposed on the segmented trace regions: (i) the
pulses of the current trace should appear consistently in the
past few recorded traces and (ii) their amplitudes should be
above a certain threshold. The former constitutes a consistency
check that forces the generation of a reliable descriptor of
the waveform of the extracted pulses that will allow match-
ing among consecutive traces. Discrete Wavelet Transform
(DWT) decomposition provides a perfectly invertible multi-
resolutional representation of a 1D signal that captures infor-
mation both for the frequency and the time domain. Therefore,
DWT is a powerful tool for extracting descriptions of non-
stationary signals like the GPR signals that exhibit slow tempo-
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ral variations in low frequency and abrupt temporal changes in
high frequency. In one level of the DWT the entry signal y[n]
(Ascan) is convolved with a high pass filter h[n] and a low pass
filter g[n] and is in both cases subsequently down-sampled by
two, producing the detail and the approximation coefficients
respectively. On a multilevel DWT, approximation coefficients
are provided to the next level and the same procedure is
repeated. The maximum number of levels the above procedure
can be repeated is determined by the length of the original
signal and the number of coefficients of the applied filters.
From one level to the next one, due to the filtering and the
subsampling, the frequency band is reduced to half and at the
same time the frequency resolution is doubled. The high-pass
filters h[n] comprise the child wavelets of the mother wavelet
function and are computed from ψj,k[t] =

1√
2j
ψ[ t−k2

j

2j ] where
j is the scale parameter accounting for the level of resolution
and k is the shift parameter. Low-pass g[n] filters are produced
by a function which is referred to as a scaling function. The
wavelet family that has been chosen here is Daubechies-6
due to the resemblance of the mother wavelet function to the
emitted GPR pulse [15].

Once the decomposition reaches the maximum level, the
detail coefficients of all levels along with the approximation
coefficients of the maximum level constitute a feature rep-
resentation of the initial input. Finally, in order to achieve
sparsity, only k-most significant coefficients are kept and the
rest are set to zero. Fig. 2 illustrates a DWT decomposition
example, applied on a pulse of width = 58 samples by
keeping only the k = 38 most significant out of a total of
78 values of the vector and discarding the rest. By applying
the inverse procedure on the retained non-zero coefficients,
an accurate reconstruction of the original signal is acquired
indicating successful sparse representation.

The above procedure is repeated for all extracted pulses.
Euclidean distances between feature vectors of pulses from
consecutive traces are calculated. Matching is achieved when
the distance between a pulse extracted from the current trace
and any pulse from the previous trace is below a certain
threshold. The matching procedure enables the tracking of the
appearance of pulses over time and allows positive identifica-
tion of a region as a salient one that appears in the last N
traces, where N = 5 in our particular case.

Furthermore, last N = 5 processed samples are used to
calculate a moving mean energy of a GPR trace, that is utilized
as a threshold on the amplitude of all current candidate pulses:
Each reflection pulse is requested to have an amplitude larger
than the moving average of values recorded at its time of
occurrence. The rationale behind this relies on the assumptions
that (i) the amplitude of a pulse originating from a reflector at
a considered distance is significantly larger than typical values
received when space at that distance is free and (ii) at each
considered depth, the underground space is most probably free,
biasing moving average towards an estimation of the energy
corresponding to free space.

Sufficiently consistent and strong reflection pulses, extracted
as described in current section, constitute the salient regions.

These regions are described as vectors of distances of the
most prominent objects in the subsurface, that are subsequently
used as the real observations from the GPR antenna for its
localization.

III. LOCALIZATION BASED ON GPR SALIENT REGIONS

A. Simulated GPR antenna model and ray casting

In our approach, where we introduce a GPR-based particle
filtering localization framework, the simulation of the GPR
scanning procedure is needed, which in turn requires a world
representation. To this end, a representation of the real world
needs to be defined. The production of synthetic GPR traces
dictates the utilization of a 3D occupancy grid map M , which
in our case is a prior generated subsurface map represented as
Octomap. The adopted structure is a fine-grained grid over
the continuous space of locations where the real world is
represented by binary variables indicating the presence of an
obstacle at the respective location. The 3D occupancy grid
also enables automatic subsurface map generation from past
scanning sessions as performed in [4]. During the simulation
phase, distance measurements between the GPR model and the
obstacles in the map are acquired, by utilizing the volumetric
ray casting technique (Fig 1). A geometric ray is generated and
traced from an origin point OS towards the ray’s direction. A
small variation to the typical ray casting is that all obstacles
that lay on the same path of the ray at a distance from the
origin OS smaller than a threshold RS are retrieved and their
corresponding distances are reported. Thus, values in the ray
casting are considered only obstacles in the map M , when the
cell’s assigned probability is higher than a Pobstacle threshold.

Having defined the world model and the penetrating ray
casting approach, synthetic GPR trace generation is feasible.
A 2D slice of the 3D occupancy grip is considered to resemble
the model applied on real GPR data acquisition (see Sect.
II-A). Given the simulated sensor’s pose, a set of geometric
rays is generated with common origin OS . The sample step dθ
is in the interval [θmin, θmax] where θmin = −FOV/2 and
θmax = FOV/2, where for each angle a new ray with the
corresponding direction is produced. The proposed volumetric
ray casting method is applied for all emitted rays. The amount
of intersected cells corresponding to obstacles depends on
the resolution MRES of the utilized 3D grid map and the
sampling step dθ of the set of rays. Finally, 2D intersected
cells are clustered together based on their distances from the
OS origin with each cluster represented by the member with
the minimum distance.

B. Particle filtering model

A particle filter localization, also known as Monte Carlo
localization (MCL), approach has been implemented herein to
track a moving antenna’s position utilizing the 3D occupancy
grid map that contains landmarks of a real underground en-
vironment, the real observations and synthetic GPR measure-
ments. The map along with the GPR antenna’s measurement
model are given as input to the particle filter in order to infer
an accurate estimation of the system state (antenna - world).
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Fig. 3. Particle filter architectural diagram.

The filter’s pipeline is illustrated in Fig. 3.
Motion / measurement model: The GPR antenna travels
on the YZ-plane with a linear speed (Vy, Vz) that is mea-
sured from inertial sensors mounted on its body. At time
t, Observationst correspond to the time of occurrence of
tracked salient regions on real GPR measurements, trans-
formed into ranges, while predictionst is the set of ranges that
correspond to a single particle’s predicted GPR measurements,
according to the simulated model described in Sec. III-A. The
filter’s pipeline (after one time initialization) is executed at
time t only if Observationst 6= ∅ and (Vy, Vz) 6= (0, 0).
Initialization: Assuming the antenna’s initial position
(Py, Pz) = (y0, z0), then Np particles, corresponding to Np

guesses of the antenna’s actual position, are generated using
a bivariate Gaussian distribution for variables y and z. The
parameters of the Gaussian are µx = x0 and µy = y0 while
σx = σy depend on the uncertainty level of (Py, Pz). The
cardinality of the particles’ set S remains equal to Np during
the localization process. Finally, if pw is the normalized weight
of particle p then pw = 1/Np, ∀p ∈ S.
Position update: The particles’ positions are updated accord-
ing to the GPR antenna’s motion model. A generated Gaussian
noise that is sufficiently smaller than the antenna’s actual
displacement is added to the particles’ translation along each
axis to incorporate uncertainty in velocity measurements.
Weight update: At time t, the weight of the nth particle is up-
dated taking into account Observationst and predictions[n]t .
A Gaussian distribution is generated for each observation,
where µ equals the observed range and σ expresses the
estimated error between a real and synthetic measurement.
Then, each particle’s weight is given by:

p[n]w =

|Observationst|∏
i=1

1√
2πσ2

e

−(pred− obs[i])2

2σ2

where obs[i] ∈ Observationst is a salient region range and
pred ∈ predictions[n]t is the predicted range that minimizes
(pred − obs[i])2. After the update, the particles’ weights are
normalized in order to represent a probability distribution, to
be used in the resampling step.
Position estimation and Resampling: The antenna’s position
(Py, Pz) is estimated by calculating the weighted mean posi-
tion of all particles in S. Lastly, the resampling procedure takes
place. Resampling is performed using a discrete distribution

of i ∈ [1, Np] to result in the selection of the ith particle,
with probability equal to its weight p

[i]
w . Finally, we set

pw = 1/Np,∀p ∈ S′, |S′| ≡ Np where S′ is the resulting
particle set.

IV. METHODOLOGY ASSESSMENT

Table I summarizes the implementation details regarding all
aforementioned aspects of the complete pipeline. The method
has been tested on subsurface data collected at a realistic test
field, using a Stream C GPR antenna made by IDS GeoRadar.
The layout of the underground environment is depicted on
the top image of Fig.4. An indicative B-Scan acquired by the

TABLE I
DEFINITION OF IMPLEMENTATION PARAMETERS

GPR Antenna Simulated GPR MCL
Fsampling = 7.3GHz RS = 6.5m Np = 500
FOp = 600MHz FOV = 80o σInit = 1

T imeWindow = 140ns MResolution = 0.1 Fexec = 2Hz
SamplingStep = 2.2cm dθ = 0.1o

GPR antenna that performed a scan session of the complete
area is provided in the middle. The bottom of Fig. 4 exhibits a
synthetically generated B-Scan of the simulated environment.
The latter has been produced by replicating the exact same
path traversed by the original GPR antenna. The tracking

Fig. 4. Ground truth (Top), real B-Scan (Middle) and synthetic B-Scan
(Bottom) of the subsurface utilities of IDS test field.

results provided on Fig. 5 depict the output of processing
applied on real A-Scans. Different colors correspond to tracked
clusters and each cluster entails trace regions matched on
consecutive A-Scans. The localization method has been tested
on the IDS test field on 9 different experiments with various
initial positions. Qualitative results of the pose estimation
are provided on Fig. 6 for different time steps of the
experiment process. Ground truth and estimated poses are
depicted with the green and blue arrows respectively. Each red
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Fig. 5. Examples of salient regions tracking.

arrow represents a pose of a single particle that exists in the
current population of the particle cloud. Particles are initially
distributed as shown on the first picture and progressively
converge to the correct pose. This convergence occurs in only
1.5m on average. Moving on to the quantitative results, a
mean of root mean square (RMS) error of 0.155 meters is
reported over 9 runs. In Fig. 7 the evolution of the RMS
error with respect to time for one of the considered sessions is
illustrated. Due to the wide variance of the initial distribution,
the error is significantly higher in the first iterations but
as more observations are processed, the error is reduced to
0.05cm.

V. CONCLUSIONS

In this work, a novel method for GPR antenna localization
based on A-scans has been proposed. Through experimental
evaluation, it has been proved that the proposed method
performs can efficiently localize a GPR antenna in a known
subsurface map. GPR A-Scans are expressed in a manner that
allows their incorporation into a particle filter algorithm as
observations. To achieve this, a simulation model of the GPR
sensor has been developed, which along with the subsurface
map and the GPR motion model are utilized for localization.
Preliminary results on real data yielded sufficiently small
localization error. As future extension to the present work, we
consider localization of underground GPR antennas along with
extension of the current method in high dimensional space.

Fig. 6. Experimental setup of GPR scanning session and evaluation of the
particle filter.

Fig. 7. RMS error (m) with respect to time (s).
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