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Abstract—Analyzing the motion of the wall of the common
carotid artery (CCA) yields effective indicators for atheroscle-
rosis. In this work, we explore the use of multitarget tracking
techniques for estimating the time-varying CCA radius from an
ultrasound video sequence. We employ the joint integrated prob-
abilistic data association (JIPDA) filter to track a set of “feature
points” (FPs) located around the CCA wall cross section. Sub-
sequently, we estimate the time-varying CCA radius via a non-
linear least-squares method and a Kalman filter. The application
of the JIPDA filter is enabled by a linearized state-space model
describing the quasi-periodic movement of the FPs and the mea-
surement extraction process. Simulation results using the Field II
ultrasound simulation program show that the proposed multitar-
get tracking method can outperform a state-of-the-art method.

Index Terms—Atherosclerosis, common carotid artery, ultra-
sound video processing, speckle tracking, multitarget tracking,
joint integrated probabilistic data association (JIPDA) filter.

I. INTRODUCTION

Atherosclerosis is a major cause of death [1]. Effective in-

dicators for atherosclerosis can be obtained from an analysis

of the motion of the wall of the common carotid artery (CCA)

[2], [3]. This paper presents a new methodology for estimating

CCA wall motion from a B-mode ultrasound video sequence.

Most methods for estimating CCA wall motion are based on

speckle tracking [4]. One of the first applications of speckle

tracking to CCA wall motion estimation used block matching

[5], [6], which is, however, affected by a phenomenon known

as speckle decorrelation [5]. This issue was addressed by using

a state-space model for the evolution of the reference block [7],

[8] or for the movement of the artery [3], [9]. As an alternative

to block matching, techniques based on optical flow [10] were

proposed [11], [12]. A comparison of different speckle track-

ing techniques in [13] showed that a modified Lucas-Kanade

algorithm outperforms other optical flow algorithms as well

as block matching algorithms. The method proposed in [14]

uses the modified Lucas-Kanade algorithm and performs an

explicit feature drift compensation.

Here, we develop a new approach to speckle tracking that

uses multitarget tracking techniques originally developed for

radar surveillance [15]–[17]. The CCA wall cross section is
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modeled as a circle, and our goal is to estimate the time-

varying circle radius from a B-mode ultrasound video se-

quence showing a transverse scan of the CCA. We use a partic-

ular multitarget tracking filter, the joint integrated probabilistic

data association (JIPDA) filter [16], [17, Ch. 5], to track “fea-

ture points” (FPs) located around the CCA wall cross section.

The time-varying CCA radius is then estimated by fitting a cir-

cle to the tracked FPs. The use of the JIPDA filter solves the

problem of speckle decorrelation: any change in the speckle

pattern is automatically detected and accounted for by remov-

ing disappeared FPs and initializing newly appeared FPs.

The main contributions of this work are (i) the introduction

and development of the multitarget tracking methodology in

medical image analysis; (ii) the establishment of a linearized

state-space model describing the quasi-periodic movement of

the FPs and the measurement extraction process; and (iii) the

embedding of the JIPDA filter in an overall method for CCA

wall motion estimation (as summarized in Fig. 1). The paper is

organized as follows. An overview of the proposed method is

given in Section II. The system model underlying the method

is developed in Section III. The method is described in Section

IV. Simulation results are presented in Section V.

II. METHOD OVERVIEW

The input to the proposed method is a B-mode ultra-

sound video sequence showing temporally successive trans-

verse scans of the CCA. From the first video frame (t=1), a

rectangular region of interest that delimits the CCA wall trans-

verse section is detected via the modified Viola-Jones detector

proposed in [18]. To find the CCA wall, which is modeled

as a circle, circle detection is performed by using the Hough

transform [19] in the region of interest. This results in a pre-

liminary CCA center point c̃ ∈ R
2 and a preliminary CCA

radius r̃ > 0. Subsequently, for all video frames (t=1, 2, . . .),
our method consists of three parts, as visualized in Fig. 1 and

discussed in the following.

Measurement extraction: At each frame time t = 1, 2, . . .,
measurements (points) zt(j)∈R

2, j = 1, . . . , N ′
t are detected

within an annular search region by means of the Harris detec-

tor [20]. The annular search region is centered at ĉt−1 (which

was estimated at the previous frame time t−1 as described in
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Fig. 1. Block diagram of the proposed method.

Section IV-C, except for ĉ0, which is equal to c̃), and it has

inner radius r̃−∆r and outer radius r̃+∆r, where ∆r> 0 is

a fixed parameter. The final number of measurements is cho-

sen as Nt = min(N ′
t , Nmax), where N ′

t was determined by

the detection procedure and Nmax is a prespecified maximum

number of measurements. The output of the measurement ex-

traction stage is the set Zt of those Nt measurements zt(j)
that achieve the highest quality in the sense defined in [20].

FP tracking: The measurement set Zt constitutes the input

to a FP tracking algorithm based on the JIPDA filter (see Sec-

tion IV-A). An FP is a simplified single-point representation of

a local configuration of strong scatterers in the monitored tis-

sue [21, Ch. 9], which yields a large response in the response

map of the Harris detector [20]. The JIPDA filter estimates

(tracks) the positions yk
t ∈ R

2 and existence probabilities pkt
of the FPs k∈Kt that are present at frame time t. Note that

Kt, the estimated set of FPs, changes with time t. Based on

the estimated FP existence probabilities and previously calcu-

lated wall association beliefs (WABs), a subset Kv
t−1⊆Kt−1

of “valid FPs” is selected (see Section IV-B).

Circle parameter estimation: The estimated positions of the

valid FPs, ỹk
t for k ∈ Kv

t−1, are passed to the circle param-

eter estimation stage. This stage calculates new CCA circle

parameter estimates ĉt and r̃t via a nonlinear least-squares fit

(see Section IV-C). These estimates are fed back to the FP

tracking stage, where they are used to correct the current FP

state estimates (see Section IV-D) and to calculate the WABs

(see Section IV-F). Finally, the radius estimates r̃t are filtered

by a Kalman filter (see Section IV-C). The resulting new radius

estimates, denoted r̂t, are the output of the overall method.

III. SYSTEM MODEL

The proposed tracking method is based on a probabilistic

“system model” that describes (i) the temporal variation of

the FP radii rkt , k∈Kt and the evolution of the underlying FP

states, and (ii) the measurement extraction process.

A. FP Radii, FP States, and FP Existence Variables

Besides the vector yk
t ∈R

2 representing the position of FP

k∈Kt in Cartesian coordinates, we will also use the represen-

tation in polar coordinates, yk⋆
t , (rkt θkt )

T, where the origin of

the coordinate system is defined to be the current CCA center

point ct. We note that yk
t and yk⋆

t are related by

yk
t = ct + φ−1(yk⋆

t ), (1)

where φ−1(yk⋆
t ) ,

(

rkt cos(θ
k
t ) rkt sin(θ

k
t )
)T

. The regularity

of the heart beat manifests itself in an approximate periodicity

of the radial movement of the FPs. Therefore, we model the

time-dependence of the FP radius rkt by the superposition of

M harmonic components [22, Ch. 11] with time-dependent

coefficients, plus a slowly varying component skt that captures

breathing artifacts [14], i.e.,

rkt =

M
∑

m=1

(

akt,m cos(mωt) + bkt,m sin(mωt)
)

+ skt . (2)

The fundamental frequency ω is estimated by a separate

method, e.g., based on an electrocardiogram.

Extending [23], the state of FP k ∈ Kt at time t is now

defined as the (2M+2)-dimensional random vector xk
t ,

(

akT
t

bkT
t skt θkt

)T
, with ak

t , (akt,1 · · · a
k
t,M )T and bkt , (bkt,1 · · ·

bkt,M )T. Here, the angle θkt does not carry any information

about the radial movement of the CCA, but it helps distinguish

between individual FPs. The FP state xk
t completely specifies

the FP position yk⋆
t via

yk⋆
t =Htx

k
t , (3)

where Ht ,

(

ha

t
hb

t
1 0

0 0 0 1

)

with ha
t ,

(

cos(ωt) cos(2ωt) · · ·

cos(Mωt)
)

and hb
t ,

(

sin(ωt) sin(2ωt) · · · sin(Mωt)
)

. We

model the temporal evolution of each FP state xk
t by a random

walk, i.e.,
xk
t = xk

t−1+ vk
t , (4)

where the driving process vk
t is independent and identically

distributed (iid) across time t and FP index k and each vector

vk
t is zero-mean Gaussian with a diagonal covariance matrix.

Each FP k is also associated with a random existence vari-

able ekt ∈{0, 1}, where ekt =1 (ekt = 0) represents the hypothe-

sis that FP k exists (does not exist) at time t. Different ekt
are assumed to evolve independently according to a first-order

Markov chain with FP survival probability ps,Pr[ekt =1|ekt−1

=1] and zero FP birth probability, i.e., Pr[ekt =1|ekt−1=0] = 0
[16], [17, Ch. 5]. According to this model, existing FPs can

disappear but no new FPs can be created. However, the JIPDA

filter includes a heuristic scheme for creating new FPs (see

Section IV-E).

B. Measurements

The measurements zt(j)∈R
2, j = 1, 2, . . . , Nt are points in

Cartesian coordinates. Each zt(j) is assumed to be associated

with an FP k∈Kt (which is then said to be “detected”) or to

be clutter (i.e., a false detection caused by imaging artifacts or

noise). It is a priori unknown if zt(j) is associated with any

specific FP k ∈Kt or if it is clutter. Each FP can give rise to

at most one measurement.

A given FP k ∈ Kt is assumed to generate a measurement

zt(j) at time t with a constant detection probability pd. We
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model the measurement generated by FP k as zt(j) = yk
t +

wt(j), where wt(j) is iid zero-mean Gaussian measurement

noise with covariance matrix σ2
wI. Inserting (1) and (3) results

in the nonlinear measurement model

zt(j) = ct+φ−1(yk⋆
t )+wt(j) = ct+φ−1(Htx

k
t )+wt(j).

(5)

However, since the JIPDA filter assumes a linear measurement

model [16], [17, Ch. 5], we linearize (5) as follows. From (5),

we have yk⋆
t = φ

(

zt(j)−ct−wt(j)
)

. We approximate the un-

known ct by the previous center point estimate ĉt−1 (see (8)),

and we approximate the Cartesian-to-polar coordinate map-

ping φ(z) =
(
√

z21 + z22 tan−1(z2/z1)
)T

by its first-order

Taylor series expansion at zt(j)− ĉt−1 [24]. This gives

yk⋆
t ≈ φ

(

zt(j)− ĉt−1

)

− Jt(j)wt(j), (6)

where Jt(j) is the Jacobian of φ(·) evaluated at ζ , zt(j)

− ĉt−1, which is given by Jt(j) =
(

ζ1/‖ζ‖ ζ2/‖ζ‖

−ζ2/‖ζ‖
2 ζ1/‖ζ‖

2

)

. Writ-

ing z⋆
t (j), φ

(

zt(j)− ĉt−1

)

for the measurements converted

to polar coordinates relative to ĉt−1, Eq. (6) reads yk⋆
t ≈

z⋆
t (j)− Jt(j)wt(j). Inserting (3) and solving for z⋆

t (j) then

yields z⋆
t (j) ≈ Htx

k
t +Jt(j)wt(j). We thus formally define

our linearized measurement model as

z⋆
t (j) = Htx

k
t + Jt(j)wt(j).

Clutter measurements (in polar coordinates) are assumed

to be distributed according to a homogeneous Poisson point

process over the annular search region described in Section II.

The mean number of clutter measurements is estimated online

using the method described in [17, Sec. 9.3].

IV. CCA WALL TRACKING

A. FP Tracking—JIPDA Filter

The core of our CCA wall tracking method is the JIPDA

filter [16], [17, Ch. 5], which is a suboptimal Bayes filter that

time-recursively calculates relevant FP statistics from all the

measurements up to the current time, i.e., Z⋆
1:t,(Z⋆

1 , . . . ,Z
⋆
t )

with Z⋆
t , {z⋆

t (1), . . . , z
⋆
t (Nt)}. The JIPDA filter relies on

the linear state-evolution and measurement models presented

in Section III. It calculates approximations x̃k
t and Σ

k
t of the

means and covariances of the posterior FP state probability

density functions f(xk
t |e

k
t = 1,Z⋆

1:t), k ∈ Kt−1. In addition,

it calculates approximations p̂kt of the posterior FP existence

probabilities pkt ,Pr[ekt =1|Z⋆
1:t], k∈Kt−1. Finally, it updates

the FP set Kt−1 by initializing new FPs and discarding existing

FPs with low existence probability (see Section IV-E). This

yields the new FP set Kt. The approximate means x̃k
t are

used as estimates of the FP states xk
t (see Section IV-B).

We employ a slightly modified version of the JIPDA fil-

ter that takes into account the results ĉt and r̃t of the circle

parameter estimation stage (see Sections IV-C and IV-D). We

will focus on our modifications of the JIPDA filter, since a

detailed discussion of the standard JIPDA filter algorithm can

be found in [17, Ch. 5].

B. FP Validation

Not all the FPs k ∈ Kt−1 whose statistics were obtained

by the JIPDA filter at the previous frame time t−1 are good

representatives of the CCA wall. The movement of FPs that

are far away from the CCA wall may be strongly affected

by the inhomogeneity of the tissue surrounding the CCA, and

some of the FPs may be altogether due to imaging artifacts.

For circle parameter estimation, we therefore use only a sub-

set Kv
t−1⊆Kt−1 of “valid FPs,” which are defined by having

both a sufficiently large WAB (see Section IV-F) ξkt−1 > γξ
and a sufficiently large approximate posterior existence prob-

ability p̂kt >γp. Here, the thresholds γξ and γp are determined

experimentally.

For each valid FP k ∈ Kv
t−1, a position estimate ỹk

t (in

Cartesian coordinates) is derived from the FP state estimate

calculated by the JIPDA filter, x̃k
t . This is done by using (1)

with ct replaced by ĉt−1 and (3) with xk
t replaced by x̃k

t ,

yielding

ỹk
t = ĉt−1 + φ−1(Htx̃

k
t ), k∈Kv

t−1 . (7)

We also calculate a weight wk
t , 1/λk

max, where λk
max denotes

the largest eigenvalue of the 2×2 matrix HtΣ
k
tH

T
t . We note

that λk
max measures our uncertainty about ỹk

t , and thus wk
t is

larger for FPs k∈Kv
t−1 with a more reliable position estimate.

C. Circle Parameter Estimation

Next, we estimate the CCA circle by fitting a circle to the

estimated positions ỹk
t of the valid FPs k∈Kv

t−1. More specif-

ically, we calculate a CCA center point estimate ĉt and a CCA

radius estimate r̃t by minimizing, with respect to c and r, the

weighted sum of (‖ỹk
t − c‖ − r)2, k∈Kv

t−1 [25]:

(ĉt, r̃t) = arg min
(c,r)

∑

k∈Kv
t−1

wk
t (‖ỹ

k
t−c‖ − r)2. (8)

This is motivated by the fact that if ỹk
t lies on a circle with

center point c and radius r, then ‖ỹk
t − c‖ − r = 0. In our

implementation, the minimization problem (8) is solved nu-

merically by means of the trust-region algorithm [26], which

is initialized by ĉt−1 and r̃t−1. (We note that ĉ0 and r̃0 equal

the preliminary circle parameters c̃ and r̃, respecively.)

According to (8), r̃t is calculated separately for each time

t, based on the current FP position estimates. This does not

directly take advantage of the model (2), (4) describing the

radial movement of the CCA wall. Therefore, we next improve

the radius estimate r̃t by Kalman filtering [17, Ch. 2]. We use

r̃t as the measurement, and define the measurement model to

be (cf. (2)) r̃t =
∑M

m=1

(

at,m cos(mωt)+bt,m sin(mωt)
)

+st
+ut, where ut is iid zero-mean Gaussian measurement noise

with variance σ2
u. The state vector is composed of the at,m and

bt,m as well as st, and its evolution is modeled by a random

walk with zero-mean Gaussian driving noise with a diagonal

covariance matrix. From the state estimate produced by the

Kalman filter, we calculate a radius estimate r̂t via (2). This

is the final result of our method.
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D. FP State Estimate Correction

The FP state estimates x̃k
t =

(

ãkT
t b̃

kT

t s̃kt θ̃kt
)T

were calcu-

lated by the JIPDA filter considering ĉt−1 =
(

ĉ
(1)
t−1 ĉ

(2)
t−1

)T
as

the origin of the coordinate system (see (7)). However, now we

consider the new center point estimate ĉt =
(

ĉ
(1)
t ĉ

(2)
t

)T
as the

origin of the coordinate system, and we translate the x̃k
t ac-

cordingly. The components of the translated FP state estimates

x̂
k
t =

(

â
kT
t b̂

kT

t ŝkt θ̂kt
)T

are obtained as âk
t = ãk

t , b̂
k

t = b̃
k

t , ŝkt =
((

s̃kt cos(θ̃
k
t ) + ∆ĉ

(1)
t

)2
+

(

s̃kt sin(θ̃
k
t ) + ∆ĉ

(2)
t

)2)1/2
, and

θ̂kt = tan−1
(

s̃k
t
sin(θ̃k

t
)+∆ĉ

(2)
t

s̃k
t
cos(θ̃k

t
)+∆ĉ

(1)
t

)

, where ∆ĉ
(i)
t , ĉ

(i)
t − ĉ

(i)
t−1. The

x̂
k
t are used to initialize the next JIPDA filter recursion and

to calculate the WABs (see Section IV-F).

E. FP Birth/Death Management

After correcting the state estimates, we remove disappeared

FPs and initialize newly appeared FPs. FP k is removed from

the FP set Kt−1 if its approximate posterior existence proba-

bility satisfies p̂kt <γD. Furthermore, a new FP is initialized for

each measurement z⋆
t (j) whose probability of not belonging

to any of the current FPs satisfies Pt(j)>γB. Here, Pt(j) =
1−

∑

k∈Kt−1
p̂kt µ

k
t (j), where µk

t (j) is an approximation (cal-

culated by the JIPDA filter) of the probability that mea-

surement z⋆
t (j) is associated with FP k, given that ekt = 1

[17, Ch. 5]. The thresholds γD and γB are determined ex-

perimentally. If measurement z⋆
t (j) initializes a new FP k,

the corresponding FP state estimate is initialized as x̂
k
t =

(

0
T
2M z⋆

t (j)
T
)T

with suitably chosen covariance Σ
k
t = Σinit

and existence probability p̂kt =pinit. This process of removing

and adding FPs from/to Kt−1 defines the new FP set Kt.

F. Calculation of the Wall Association Beliefs

The WABs ξkt−1, k ∈ Kt−1 were used in Section IV-B to

define the subset Kv
t−1⊆Kt−1 of “valid FPs” from which the

CCA circle parameters are estimated. The WAB ξkt ∈ [0, 1]
quantifies our belief that FP k belongs to the CCA wall. It

is defined as follows. Let T k
t , {tkB, t

k
B + 1, . . . , t} be the

lifetime of FP k ∈Kt up to the current time t; here, tkB denotes

the time when FP k was born. Furthermore, let nk
t denote

the number of times t′ ∈ T k
t at which the estimated position

ŷ
k⋆
t′ ,Ht′ x̂

k
t′ of FP k was inside an annular region Rt′ with

center point ĉt′ , inner radius r̃t′− ǫ, and outer radius r̃t′ + ǫ,
where ǫ > 0 is an experimentally determined constant. (Our

definition of Rt′ is based on r̃t′ rather than on the Kalman-

filtered version r̂t′ because r̃t′ is more consistent with the

current FP position estimates.) We note that ŷk⋆
t′ is inside Rt′

if and only if |ht′ x̂
k
t′− r̃t′ | ≤ ǫ, where ht′ is the first row of

Ht′ . Finally, let αk
t , nk

t + αk
0 and βk

t , n̄k
t + βk

0 , where

n̄k
t , |T k

t | − nk
t and the choice of αk

0 and βk
0 is discussed

below. Then, the WAB is defined as

ξkt ,
αk
t

αk
t + βk

t

, k ∈Kt .

We choose αk
0 and βk

0 as follows. For FPs k ∈Kt that exist

already at the first frame time, i.e., tkB =1, and that initially lie

in R1, i.e., |h1x̂
k
1−r̃1| ≤ ǫ, we set αk

0 =10 and βk
0 =0, which

results in a high initial WAB ξk1 = αk
1/(α

k
1 + βk

1 ) = 11/11
= 1 (note that nk

1 = 1 and n̄k
1 = 0). This ensures that in the

transient phase after initialization of the tracking filter, mainly

the initial set of FPs is used for circle estimation, and thus,

subsequently, the filter is likely to follow the actual CCA wall

as specified during initialization. For all other FPs—i.e., with

tkB >1 or with tkB =1 but |h1x̂
k
1−r̃1| > ǫ—we set αk

0 = βk
0 =1,

which, at the time of birth tkB, results in ξk
tkB
=2/3 (1/3) if FP

k is inside (outside) RtkB
.

V. SIMULATION RESULTS

To demonstrate the performance of our method, we applied

it to synthetic CCA ultrasound sequences generated by the

Field II ultrasound simulation program [27]. The input to the

Field II program is a sequence of sets of scatterers, one set

for each frame, and the output is a sequence of ultrasound-like

images. At frame time t=1, we randomly generated an initial

set of 105 scatterers distributed uniformly over the image re-

gion. The amplitudes of the scatterers were determined by an

echogenicity map, which we created by smoothing and pos-

terizing a real ultrasound image. For each subsequent frame

time t≥2, we generated a new set of scatterers by displacing

the scatterers of the initial set according to the mathematical

model of CCA wall movement described in [28]. Furthermore,

to simulate speckle decorrelation, at each time a specified pro-

portion of scatterers (0%, 2%, or 5%) was replaced by new

randomly drawn scatterers. The resulting image sequences—

produced by the Field II program—are referred to as S0, S2,

and S5, respectively. Each of these sequences consists of 1325

frames. A more detailed description of our generation proce-

dure can be found in [14].

Our JIPDA filter implementation used the belief propaga-

tion algorithm proposed in [29] to calculate the approximate

association probabilities µk
t (j) mentioned in Section IV-E. The

parameters of our model and method were chosen as follows:

∆r=10, Nmax =100, M = 9, ω = π/11, ps = 0.99, pd = 0.5,

σ2
w = 5 · 10−1, γξ = γp = 0.8, σ2

u = 5 · 10−1, γD = 10−2,

γB =0.85, Σinit =diag{1, . . . , 1, 1, 0.01rad2}, pinit= 0.1, and

ǫ=4. For the driving noise vk
t (see Section III-A), the vari-

ances corresponding to the state components akt,m and bkt,m are

5 ·10−2, and those corresponding to the state components skt
and θkt are 5·10−1 and 10−3 rad2, respectively. Finally, for the

Kalman filter driving noise (see Section IV-C), the variances

corresponding to akt,m and bkt,m are 10−4, and the variance

corresponding to skt is 10−1.

Table I lists the root-mean-square error (RMSE) of the es-

timates of the CCA wall displacement obtained with the pro-

posed method and with the reference method of [14]. The

CCA wall displacement is defined as the CCA wall circle ra-

dius minus its temporal mean [14]. One can see that the pro-

posed method clearly outperforms the reference method for

all three scenarios. For image sequence S5, Fig. 2 shows the

estimates of the CCA wall displacement, the true CCA wall

displacement, and the absolute value of the displacement esti-

mation error versus time, within a representative time interval.
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TABLE I
RMSE OF THE CCA WALL DISPLACEMENT ESTIMATES

RMSE [px]
S0 S2 S5

Proposed method 0.4933 0.4095 0.3835

Reference method [14] 0.8256 0.5604 0.6477

It is seen that the proposed method tends to track the CCA

wall radius more accurately than the reference method.

VI. CONCLUSION

We explored the use of multitarget tracking for estimating

the time-varying radius of the common carotid artery (CCA)

from an ultrasound video sequence. Our approach is to track

a set of “feature points” (FPs) located around the CCA wall

cross section and then fit a circle to the tracked FPs. Our ex-

perimental results for simulated ultrasound video sequences

demonstrated superior performance of the proposed method

relative to a state-of-the-art method. Possible directions for fu-

ture research include an improvement of the method’s robust-

ness to the artifacts and imperfections affecting real ultrasound

video sequences and a reduction of the method’s sensitivity to

the choice of the parameters.
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