
Reproducibility of Deep CNN for Biomedical Image
Processing Across Frameworks and Architectures

Stefano Marrone
University of Naples Federico II

Naples, Italy
stefano.marrone@unina.it

Stefano Olivieri
The MathWorks Srl

Tourin, Italy
stefano.olivieri@mathworks.it

Gabriele Piantadosi
University of Naples Federico II

Naples, Italy
gabriele.piantadosi@unina.it

Carlo Sansone
University of Naples Federico II

Naples, Italy
carlo.sansone@unina.it

Abstract—With the increasing spread of easy and effective
frameworks, in recent years Deep Learning approaches are
becoming more and more used in several application fields,
including computer vision (such as natural and biomedical image
processing), automatic speech recognition (ASR) and time-series
analysis. If, on one hand, the availability of such frameworks
allows developers to use the one they feel more comfortable with,
on the other, it raises questions related to the reproducibility
of the designed model across different hardware and software
configurations, both at training and at inference times. The re-
producibility assessment is important to determine if the resulting
model produces good or bad outcomes just because of luckier or
blunter environmental training conditions. This is a non-trivial
problem for Deep Learning based applications, not only because
their training and optimization phases strongly rely on stochastic
procedures, but also because of the use of some heuristic con-
siderations (mainly speculative procedures) at training time that,
although they help in reducing the required computational effort,
tend to introduce non-deterministic behavior, with a direct impact
on the results and on the model’s reproducibility. Usually, to face
this problem, designers make use of probabilistic considerations
about the distribution of data or focus their attention on very
huge datasets. However, this kind of approach does not really
fit some application field standards (such as medical imaging
analysis with Computer-Aided Detection and Diagnosis systems
– CAD) that require strong demonstrable proofs of effectiveness
and repeatability of results across the population. It is our opinion
that in those cases it is of crucial importance to clarify if and
to what extent a Deep Learning based application is stable and
repeatable as well as effective, across different environmental
(hardware and software) configurations. Therefore, the aim of
this work is to quantitatively analyze the reproducibility problem
of Convolutional Neural Networks (CNN) based approaches for
the biomedical image processing, in order to highlight the impact
that a given software framework and hardware configurations
might have when facing the same problem by the same means. In
particular, we analyzed the problem of breast tissue segmentation
in DCE-MRI by using a modified version of a 2D U-Net CNN, a
very effective deep architecture for semantic segmentation, using
two Deep Learning frameworks (MATLAB and TensorFlow)
across different hardware configurations.

I. INTRODUCTION

In the last years, the release of different easy and effective
frameworks for Deep Learning (DL) allowed many researchers

to explore their applicability in several application contexts.
Although this often resulted in state-of-art performance, its use
in critical domains starts to raise some concerns [1]. Above
all, with the diffusion of DL techniques for biomedical image
processing, performing a reliable evaluation of obtained re-
sults requires to consider their reproducibility across different
hardware and software configurations, both at training and at
inference times. This is a non-trivial problem not only because
DL training and optimization phases strongly rely on stochas-
tic procedures, but also because of the use of some heuristic
considerations (mainly speculative procedures) at training time
that, although they help in reducing the required computational
effort, tend to introduce non-deterministic behavior, with a
direct impact on the results and on the model’s reproducibility.
Usually, to face this problem, researches take probabilistic
considerations about the distribution of data into account or
focus their attention on very huge datasets. However, this kind
of approach does not fit the medical imaging analysis with
Computer-Aided Detection and Diagnosis systems [2], requir-
ing demonstrable proofs of effectiveness and reproducibility.
Our opinion is that in this case it is very important to clarify
if and to what extent a DL based application is stable and
repeatable as well as effective, across different environmental
(hardware and software) configurations, in order to determine
if the resulting model produces good or bad outcomes just be-
cause of luckier or blunter environmental training conditions.
Therefore, the aim of this paper is to quantitatively highlight
the reproducibility problem of Convolutional Neural Networks
(CNN) based approaches for the biomedical image processing,
in order to highlight the impact that a given software frame-
work and hardware configuration might have when facing the
same problem by the same means.
In particular, we analyze the approach proposed in our pre-
vious work [3] for breast tissues segmentation in DCE-MRI
by using a modified version of a 2D U-Net CNN [4], a very
effective deep architecture for semantic segmentation, using
two Deep Learning frameworks (MATLAB and TensorFlow)
across different hardware configurations.

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

Fig. 1: Our U-Net proposal for breast tissues segmentation: left side performs the contracting path, right side performs the
expansive path.

L1

L2

L3

L4

L5

input

image

output

segmentation

map

1 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 1

Conv 3x3, ReLU, BatchNorm

Copy

MaxPool 2x2

UpConv 2x2

Conv 1x1, Sigmoid

The rest of the paper is organized as follows: section II
introduces the reproducibility issue for the deep learning
frameworks and the considered breast segmentation problem;
section III reports the obtained producibility results, while
section IV draws some conclusions.

II. REPRODUCIBILITY OF DEEP LEARNING MODELS

Deep Learning is one of the most proliferous topics in
the recent years’ machine learning research, with applications
that go from computer vision (such as natural and biomedical
image processing) to automatic speech recognition (ASR) and
time-series analysis. On this wave of success, several entities
(both industries and academics) released several frameworks to
make DL accessible to almost everyone. Although frameworks
usually differ on many aspects (used programming language,
approach to computation, data processing and storage, etc),
they all share the need for advanced General-Purpose GPU
(GP-GPU) computing, to be able to handle the huge number
of matrix operations made to train a deep neural network.
At the moment of writing this work, NVIDIA is the only
provider of a suite of APIs and libraries for Deep Learning,
based on their GP-GPU paradigm CUDA, whose capabil-
ities could be well synthesized by cuDNN [5], a GPU-
accelerated library of primitives (such as 2D Convolution) for
deep neural networks. cuDNN default configuration exploits
stochastic and speculative procedures that, although increase
the execution speed, introduce uncontrollable factors that
can result in not reproducible outcomes. In particular, the
following cuDNN routines do not guarantee the reproducibility
because they use atomic (i.e. not guaranteed synchronization
or ordering constraints for memory operations) functions to
speed up the computation: cudnnConvolutionBackwardFil-
ter, cudnnConvolutionBackwardData, cudnnPoolingBackward
and cudnnSpatialTfSamplerBackward [5]. The source of this
non-reproducibility could be related to some implementation

choices of synchronization and kernel verification routines
(such as the barrier synchronization) [6]. In all the frameworks
using cuDNN (such as MATLAB™, TensorFlow, PyTorch
etc.), this causes non-deterministic gradient updates, mainly
due to underlying non-deterministic reductions for convolu-
tions (i.e. floating-point operations are not necessarily asso-
ciative) leading to randomness in the trained models.
Thus, in this paper, we perform a Montecarlo-like repeti-
tion experimentation of our uNet based breast segmentation
approach, with the aim of measuring the model robustness
and stability over different software frameworks and hardware
configurations. To this aim, we performed a Montecarlo-like
repetition experimentation, considering the model stable, and
thus repeatable, if results stay within a given confidence
interval. In our previous work [3] we propose to perform
the breast tissues segmentation by considering the 3D volume
as a composition of 2D sagittal slices and using a modified
2D U-Net (Figure 1): (a) the output feature-map was set to
one to speed up the convergence; (b) zero-padding, with a
size-preserving strategy, was applied for preserving the output
shapes; (c) batch normalization (BN) layers were inserted after
each convolution. The network was trained for 50 epochs by
minimizing the task-specific loss 1−DSC, with

DSC = (2 · n(GT ∩ SEG))/(n(GT) + n(SEG)) (1)

where n(·) represents the enclosed volume number of
voxels, while GT and SEG represents the Ground Truth and
produced Segmentation mask respectively.
The network kernel weights have been initialized from a
standard distribution [7] N (0,

√
2/(fani + fano)), where fani

and fano are the convolution layer input and output features
sizes respectively, while the bias weights have been initialized
to a constant value of 0.1 to avoid slow-start learning when
using ReLu activation functions. ADAM optimizer [8] was

2019 27th European Signal Processing Conference (EUSIPCO)

Fig. 2: Boxplots of the ICPR2018 [3] results and of the first
10 out of 50 Montecarlo executions in Table I.

used to minimize the loss function, where we set β1 = 0.9,
β2 = 0.999 and lr = 0.001, with an inverse time decay
strategy. Performance was evaluated on 42 subjects DCE-MRI
data acquired using a 1.5T scanner (Magnetom Symphony,
Siemens) equipped with breast coil, considering only the
pre-contrast series.
The proposed CNNs have been implemented using two
different frameworks:

• K: Keras high-level neural networks API in Python 3.6
with the TensorFlow (v1.9) as the back-end

• M: MATLAB 2018b with Deep Learning Toolbox 12.0
(formerly Neural Network Toolbox)

Moreover, with the aim of also considering the likely
impact of the underlying GPU family, the nets have been
evaluated on the following hardware configurations:

• Conf. A: A virtual environment freely offered by Google
Colaboratory (https://colab.research.google.com). The
virtual machine has an Intel(R) Xeon(R) @ 2.2GHz
CPU (2 cores), 13GB RAM and an Nvidia K80 GPU
(Tesla family) with 12GB GRAM (Tested framework:
K)

• Conf. B A physical server hosted in our university HPC
center (http://www.scope.unina.it) equipped with 2 x
Intel(R) Xeon(R) Intel(R) 2.13GHz CPUs (4 cores),
32GB RAM and an Nvidia Titan Xp GPU (Pascal

TABLE I: Results obtained for each of the first 10 out of
50 Montecarlo executions of the 10-fold cross-validation for
our approach, using the Conf. A and the Framework K. The
results presented in ICPR2018 [3] are also reported in bold.
Median values with corresponding 95% confidence intervals
(LB: LowerBound, UB: UpperBound) are reported.

Repetition DSC [%] LB [%] UB [%]

ICPR2018 [3] 95.90% 95.16% 96.64%
Rep.01 95.80% 95.24% 96.37%
Rep.02 96.19% 95.62% 96.75%
Rep.03 95.85% 95.38% 96.39%
Rep.04 96.11% 95.69% 96.57%
Rep.05 96.04% 95.15% 96.62%
Rep.06 95.90% 95.02% 96.60%
Rep.07 96.25% 95.29% 96.52%
Rep.08 95.93% 95.44% 96.56%
Rep.09 95.95% 95.38% 96.36%
Rep.10 95.89% 95.35% 96.43%

family) with 12GB GRAM (Tested frameworks: K and
M)

• Conf. C A DELL R720 equipped with two Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80GHz, 128GB RAM
and two NVIDIA Tesla K20 (Pascal family) with 5GB
GRAM (Tested frameworks: K and M)

The assessment was performed by using a patient-based 10-
fold Cross Validation (CV), in order to prevent slices from
the same subject belonging to two different folds, applying
a training/test data standardization using the median and
standard deviation calculated only on the training patients’
fold. To validate the repeatability of our model, we repeated
the execution 50 times. We used the same initialization seeds
for the random numbers generators to try highlighting only
the uncertainty due to random considerations introduced by
the optimization tools’ randomness, minimizing the effects
that could be raised by a different source of randomness. The
obtained breast-mask is compared to the gold standard in terms
of Dice Similarity Coefficient (DSC) index.

III. RESULTS

For brevity reasons, this section tables reports only the
first 10 executions of the Montecarlo analysis for each con-
figuration and only the boxplot related to table 1 results.
Each Montecarlo execution applies a 10-fold cross-validation
producing 10 folds containing the 42 patient segmentations.
The median values of a part of the Montecarlo execution are
reported in the Tables I, II, III, IV and V.

Tables I to V show how the computational frameworks
for the optimization of deep learning models suffer from
reproducibility during the training phase producing different
models and thus, different results. This problem is not limited
to the analyzed framework, MATLAB and TensorFlow, nor

2019 27th European Signal Processing Conference (EUSIPCO)

TABLE II: Results obtained for each of the first 10 out of
50 Montecarlo executions of the 10-fold cross-validation for
our approach, using the Conf. B and the Framework K. The
results presented in ICPR2018 [3] are also reported in bold.
Median values with corresponding 95% confidence intervals
(LB: LowerBound, UB: UpperBound) are reported.

Repetition DSC [%] LB [%] UB [%]

ICPR2018 [3] 95.90% 95.16% 96.64%
Rep.01 95.89% 95.18% 96.47%
Rep.02 95.91% 95.25% 96.32%
Rep.03 96.14% 95.08% 96.66%
Rep.04 95.90% 94.92% 96.48%
Rep.05 96.01% 94.98% 96.41%
Rep.06 96.12% 94.95% 96.53%
Rep.07 96.03% 95.56% 96.28%
Rep.08 95.95% 95.52% 96.29%
Rep.09 96.08% 94.77% 96.39%
Rep.10 96.12% 95.31% 96.48%

TABLE III: Results obtained for each of the first 10 out of
50 Montecarlo executions of the 10-fold cross-validation for
our approach, using the Conf. B and the Framework M. The
results presented in ICPR2018 [3] are also reported in bold.
Median values with corresponding 95% confidence intervals
(LB: LowerBound, UB: UpperBound) are reported.

Repetition DSC [%] LB [%] UB [%]

ICPR2018 [3] 95.90% 95.16% 96.64%
Rep.01 96.25% 95.43% 96.53%
Rep.02 95.86% 95.40% 96.15%
Rep.03 95.86% 94.94% 96.08%
Rep.04 96.11% 95.61% 96.52%
Rep.05 95.99% 95.27% 96.27%
Rep.06 95.90% 95.15% 96.26%
Rep.07 95.91% 95.22% 96.31%
Rep.08 96.21% 95.64% 96.46%
Rep.09 95.95% 95.62% 96.13%
Rep.10 95.94% 95.64% 96.18%

it depends on the used GPU architecture, but it lies in the
Nvidia libraries as discussed in Section II. Nevertheless, the
randomness introduced in the trained models (by fixing the
seeds of all the random numbers generators) produces not
statistically different results as graphically shown in Figure 2.
Finally, Table VI reports the statistics (median values) about
confidence intervals (CIs) and training times for each of the
experiments to better compare and discuss the results. The CI
size has been calculated as the difference between the Upper
Bound and the Lowe Bound (UB - LB).

TABLE IV: Results obtained for each of the first 10 out of
50 Montecarlo executions of the 10-fold cross-validation for
our approach, using the Conf. C and the Framework K. The
results presented in ICPR2018 [3] are also reported in bold.
Median values with corresponding 95% confidence intervals
(LB: LowerBound, UB: UpperBound) are reported.

Repetition DSC [%] LB [%] UB [%]

ICPR2018 [3] 95.90% 95.16% 96.64%
Rep.01 96.05% 94.87% 96.33%
Rep.02 95.99% 95.11% 96.51%
Rep.03 96.05% 95.32% 96.38%
Rep.04 96.00% 95.61% 96.30%
Rep.05 95.91% 94.98% 96.27%
Rep.06 96.04% 95.09% 96.51%
Rep.07 96.14% 95.08% 96.50%
Rep.08 95.99% 95.35% 96.51%
Rep.09 95.92% 95.32% 96.28%
Rep.10 96.10% 95.68% 96.32%

TABLE V: Results obtained for each of the first 10 out of
50 Montecarlo executions of the 10-fold cross-validation for
our approach, using the Conf. C and the Framework M. The
results presented in ICPR2018 [3] are also reported in bold.
Median values with corresponding 95% confidence intervals
(LB: LowerBound, UB: UpperBound) are reported.

Repetition DSC [%] LB [%] UB [%]

ICPR2018 [3] 95.90% 95.16% 96.64%
Rep.01 95.98% 95.66% 96.15%
Rep.02 95.92% 95.20% 96.19%
Rep.03 96.16% 95.67% 96.56%
Rep.04 95.84% 95.38% 96.13%
Rep.05 95.88% 95.15% 96.25%
Rep.06 95.91% 95.00% 96.13%
Rep.07 96.19% 95.63% 96.44%
Rep.08 95.86% 95.56% 96.09%
Rep.09 96.19% 95.38% 96.48%
Rep.10 95.95% 95.27% 96.36%

IV. DISCUSSIONS AND CONCLUSIONS

The aim of this paper was to quantitatively highlight the
problem of the reproducibility of Deep Learning based ap-
proaches for biomedical image processing, in order to high-
light the impact that a given software framework and hardware
configurations might have when facing the same problem by
the same means.
Although results show that the reproducibility problem exists,
it is worth noticing that it is not limited to the analyzed
frameworks (MATLAB and TensorFlow), neither in the used
GPU architecture, but it lies in the Nvidia libraries as discussed
in Section 2 (and this is further confirmed by the fact that
several CPUs executions produce totally reproducible results).

2019 27th European Signal Processing Conference (EUSIPCO)

TABLE VI: Comparative results (median values) for each experiment set-up.

Conf. A B B C C
Framework K K M K M

Median CI size 1.13% 1.36% 0.95% 1.22% 0.94%
Median training time ∼50min ∼13min ∼33hours ∼25min ∼42hours

Moreover, tables I to V show that the variability across
different frameworks is more evident than the variability across
different hardware architectures.
Analyzing the boxplot in Figure 2, we can state that our
CNN-based model is stable to the different training executions
over different frameworks and hardware configurations (since
the confidence intervals obtained on the tests data overlap).
It is interesting to note that, although from a statistical
point of view there are no significant differences among
the configurations (both hardware and software), the model
trained with MATLAB appears to be more stable, since its
confidence intervals are narrower (about 27% smaller). This
suggests that the MATLAB framework better compensates for
the randomness associated with the training, paying it in terms
of training time.
Generally speaking, the randomness introduced by deep learn-
ing libraries, could impact outcomes of biomedical image
processing application relying on deep learning approaches.
Therefore, in order to not provide not totally reproducible
claims, it is very important to shifts the attention from a pure
performance point-of-view to a statistical reproducibility of
the obtained models, since a model showing large variations
in results will have wider confidence intervals with respect to
a more stable one.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan Xp GPU used
for this research, the availability of the Calculation Centre
SCoPE of the University of Naples Federico II and thank the
SCoPE academic staff for the given support. The authors are
also grateful to Dr. Antonella Petrillo, Head of Division of
Radiology and PhD Roberta Fusco, Department of Diagnostic
Imaging, Radiant and Metabolic Therapy, “Istituto Nazionale
dei Tumori Fondazione G. Pascale” - IRCCS, Naples, Italy, for
providing data. This work is part of “Synergy-net: Research
and Digital Solutions against Cancer” project (funded in the
framework of the POR Campania FESR 2014-2020).

REFERENCES

[1] G. Ras, M. van Gerven, and P. Haselager, “Explanation methods in
deep learning: Users, values, concerns and challenges,” in Explainable
and Interpretable Models in Computer Vision and Machine Learning.
Springer, 2018, pp. 19–36.

[2] G. Piantadosi, S. Marrone, R. Fusco, M. Sansone, and C. Sansone,
“Comprehensive computer-aided diagnosis for breast t1-weighted dce-mri
through quantitative dynamical features and spatio-temporal local binary
patterns,” IET Computer Vision, vol. 12, no. 7, pp. 1007–1017, 2018.

[3] G. Piantadosi, M. Sansone, and C. Sansone, “Breast segmentation in mri
via u-net deep convolutional neural networks,” in 2018 24th International
Conference on Pattern Recognition (ICPR). IEEE, 2018, pp. 3917–3922.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[5] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[6] E. Bardsley and A. F. Donaldson, “Warps and atomics: Beyond barrier
synchronization in the verification of gpu kernels,” in NASA Formal
Methods Symposium. Springer, 2014, pp. 230–245.

[7] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010, pp.
249–256.

[8] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

2019 27th European Signal Processing Conference (EUSIPCO)

