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Abstract—The capacity region of the two-user multiple-input
single-output (MISO) interference channel is an open problem,
and various achievable rate regions have been discussed in the
literature. In this paper, we assume that the transmit signals
are Gaussian and that the receivers treat interference as noise
(TIN), i.e., we focus on the TIN rate region with Gaussian
inputs. Our aim is to compute the rate region boundary for
the case of proper Gaussian signaling with time-sharing, i.e.,
the data rates and required transmit powers may be averaged
over several transmit strategies. To this end, we apply methods
from convex optimization (in particular Lagrange duality and the
cutting plane algorithm), and propose the novel mixed monotonic
programming (MMP) framework to treat the arising nonconvex
subproblems. The obtained TIN rate region with proper Gaussian
signals and time-sharing is significantly larger than previously
computed TIN rate regions with proper Gaussian signals, and
can even outperform TIN strategies with improper signaling.

Index Terms—Improper signaling, interference channel, La-
grange duality, monotonic optimization, time-sharing.

I. INTRODUCTION

The two-user multiple-input single-output (MISO) inter-
ference channel models the concurrent transmission of two
multiantenna transmitters to their respective single-antenna
receivers via a shared medium. While the capacity region of
the MISO interference channel is in general an open problem,1

there are various results about achievable rate regions that are
obtained by restricting the considerations to a particular class
of transmit strategies. Among the most prominent examples are
so-called TIN strategies, where the receivers treat interference
as noise and do not try to decode the interference.

Methods to design transmit strategies under a restriction to
TIN strategies with proper Gaussian (i.e., circularly symmetric
complex Gaussian) input signals were discussed, e.g., in [2]–
[8]. Centralized gradient ascent algorithms [2], distributed
interference pricing [3], [4], or game-theoretic methods [5] can
be used as suboptimal approaches to maximizing the (weighted)
sum rate or other utility functions. Such heuristics are good
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1For the more general scenario of a multiple-input multiple-output (MIMO)
interference channel, results on the capacity region or the sum capacity can
be found for several special cases in [1].

candidates for practical implementation due to their low
computational complexity and/or the possibility of distributed
implementation. However, to assess the fundamental limitations
of TIN strategies and to have a benchmark for the heuristic
methods, there is also an interest in globally optimal solutions.

Due to the nonconcave rate expressions in the interference
channel, globally optimal algorithms usually have exponential
complexity [6], [7], [9]. An exception is the so-called rate
balancing optimization, where the sum rate is maximized while
keeping a fixed pre-defined ratio between the per-user rates.
For this problem, an efficient solution via a sequence of convex
feasibility problems is available [7], [8]. However, this approach
is only applicable under a restriction to pure strategies without
time-sharing, i.e., if it is not allowed to average data rates and
transmit powers over several transmit strategies.

In this paper, we derive a method for globally optimal rate
balancing in the case with time-sharing, which can be used to
compute the Pareto boundary of the time-sharing rate region.
As will be explained after introducing the system model in
Section II, this region is in general larger than the convex
hull of the rate region with pure strategies [10], and can thus
not be obtained via algorithms for pure strategies, such as
the weighted sum rate maximization from [6], [7] or the rate
balancing method from [7], [8].

The solution method we propose in Section IV is based
on a Lagrangian dual approach, where evaluating the dual
function requires solving a nonconvex inner problem. For
this purpose, we propose the framework of mixed monotonic
programming (see Section III), which is a generalization of
previous monotonic optimization methods that rely, e.g., on
differences of monotonic functions (e.g., [6], [11, Sec. 7]).

As an application example, we use the proposed algorithm
in a numerical simulation to quantify the gains by time-
sharing compared to the convex hull formulation. Moreover, we
observe that globally optimal time-sharing under a restriction
to proper Gaussian signals can even outperform previously
proposed transmit strategies with improper Gaussian signals.
This conclusion is different from the one in [8], where the full
potential of time-sharing was not exploited in the reference
scheme with proper signaling.

Notation: Inequalities for vectors are meant element-wise.
We use the all-ones vector 1, the zero vector 0, and the identity
matrix IM of size M . We write •T and •H for transpose and
conjugate-transpose, respectively.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

For the users k ∈ {1,2}, we consider the data transmission

yk = hH
kkxk + h

H
kjxj + ηk (1)

with j = 3− k, where hH
kk ∈ C1×Mk is the intended channel

of user k, hH
kj ∈ C1×Mj is the unintended channel from

transmitter j to receiver k, and ηk ∼ CN (0,σ2
k) is the additive

white proper Gaussian noise at receiver k. Unless otherwise
stated, we assume the transmit signal xk to be proper Gaussian.
In this case, it can be generated from a scalar proper Gaussian
input sk ∼ CN (0,1) by means of

xk =
√
pkbksk (2)

where pk ∈ [0;Pk] is the transmit power of user k and bk is a
normalized beamforming vector with ‖bk‖ = 1. When treating
interference as noise, the achievable rate of user k is

rk(X ) = log2

(
1 +

pk|hH
kkbk|2

σ2
k + pj |hH

kjbj |2

)
(3)

where X = (b1, b2, p1, p2).
Pareto-optimal rate pairs (r1, r2) can be computed by solving

the so-called rate balancing problem

max
X , R∈R

R s. t. rk(X ) ≥ ρkR, ∀k (4a)

pk ≤ Pk, ∀k (4b)
pk ≥ 0, ∀k (4c)
‖bk‖ = 1, ∀k (4d)

where ρ = [ρ1,ρ2]
T = [ρ1,1 − ρ1]T for various ρ1 ∈ [0; 1]

is the so-called rate profile vector. By varying the relative
rate targets ρ, any point on the Pareto boundary of the rate
region can be computed (e.g., [12]). A solution to (4) can be
found efficiently by solving a sequence of second-order cone
programs (e.g., [7], [8]).

However, this problem formulation only allows for pure
strategies and does not yet include the possibility of averaging
data rates or transmit powers over several transmit strategies.
Instead of (4), we consider the time-sharing problem

max
X (`),L∈N,R∈R
τ≥0:1Tτ=1

R s. t.

L∑
`=1

τ`rk(X (`)) ≥ ρkR, ∀k (5a)

L∑
`=1

τ`p
(`)
k ≤ Pk, ∀k (5b)

p
(`)
k ≥ 0, ∀k, ∀` (5c)

‖b(`)k ‖ = 1, ∀k, ∀` (5d)

where X (`) = (b
(`)
1 , b

(`)
2 , p

(`)
1 , p

(`)
2 ) is the `th strategy, and

τ = [τ1, . . . ,τL]
T is the vector of time-sharing weights, which

lies inside the probability simplex. Instead of this information-
theoretic notion of coded time-sharing, where both the rates
and the transmit powers are averaged [10], some researchers
also consider a stricter formulation, where (5b) is replaced by

p
(`)
k ≤ Pk, ∀k, ∀`. (6)

As the obtained rate region corresponds to the convex hull of
the region from (4), we call this stricter version convex hull
formulation [10]. In general, time-sharing can achieve larger
rate regions than a convex hull formulation [10], [13], and this
turns out to be true also in the scenario we consider.

Unlike for the optimization of pure strategies in (4), there is
no efficient algorithm for solving (5). In this paper, we solve
this optimization problem in a globally optimal manner using
Lagrange duality and mixed monotonic programming.

III. MIXED MONOTONIC PROGRAMMING

We first introduce the mixed monotonic programming
method, which we then apply to the nonconvex auxiliary
problems that we are facing later on. Consider the optimization

max
x∈RN

f(x) s. t. xmin ≤ x ≤ xmax (7)

where f : RN → R is such that there exists F : RN×RN → R
with the following properties:

F (x,y) ≤ F (x′,y) if x ≤ x′, (8)
F (x,y) ≥ F (x,y′) if y ≤ y′, (9)
F (x,x) = f(x). (10)

Then, we call F a mixed monotonic (MM) function and (7) a
mixed monotonic program (MMP). Introducing the placeholder
y (with the same dimension as x) facilitates calculating an
upper bound later on. The concept could be extended to
also incorporate mixed monotonic constraints, but this is not
required for the optimization problems considered in this paper.

We propose to solve the MMP (7) by a branch-reduce-and-
bound (BRB) approach, whose main idea is to successively split
the feasible set into small boxes (branching) and to compute
an upper bound to the value of the objective function inside
each box (bounding). The reduction step is optional and will
thus be discussed separately later on.

We can use (8)–(10) to verify that

U([a; b]) := F (b,a) ≥ F (x,x) = f(x), ∀x ∈ [a; b] (11)

is an upper bound to the value of the objective function inside
a box B = [a; b] = {x |a ≤ x ≤ b}. Moreover, due to (10),
this utopian upper bound converges to an achievable value as
b− a→ 0, which is called consistency [14, Sec. 6.2.1].

In each iteration, the BRB algorithm chooses the box with
the highest upper bound B? = [a?; b?] and subdivides it into
two smaller boxes by cutting along its longest edge, i.e.,

B1 =

[
a?; b? − b?n? − a?n?

2
en?

]
(12)

B2 =

[
a? +

b?n? − a?n?

2
en? ; b?

]
(13)

where en is the nth canonical unit vector, and

n? = argmax
n∈{1,2}

b?n − a?n. (14)

Whenever a new box is created, we can also check whether
an arbitrarily chosen point inside this box leads to an achievable
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value that exceeds the best value observed so far. The procedure,
which is summarized in Algorithm 1, terminates as soon as the
currently highest upper bound exceeds the current best value
by no more than a given error tolerance ε. The result is an
ε-optimal solution, i.e., a point xbest such that f(xbest) is at
most ε worse than the global optimum.

Algorithm 1 BRB Method for the MMP (7)
Require: initial set B = {[xmin; xmax]} and error tolerance ε

1: xbest ← xmin
2: while B 6= ∅ do
3: B? ← argmaxB∈B U(B) using (11)
4: if U(B?)− f(xbest) ≤ ε, then break
5: for i ∈ {1,2} do
6: obtain Bi ← [ai; bi] using (12)–(13)
7: if f(ai) > f(xbest), then set xbest ← ai
8: Bi ← reduce(Bi) using Section III-A {optional}
9: if Bi 6= ∅, then add it to B

10: end for
11: remove B? from B
12: end while
13: return xbest

The BRB algorithm for difference-of-monotonic (DM)
problems from [11, Sec. 7] is a special case of the proposed
method since a DM problem with f(x) = f1(x) − f2(x)
and nondecreasing f1 and f2 is a special case of an MMP,
where F (x,y) = f1(x)−f2(y). A formal convergence proof is
omitted due to space constraints (journal version in preparation),
but it could be done in analogy to [11, Sec. 7.5] by exploiting
that the subdivision is exhaustive (boxes converge to singletons)
and that the bound (11) is consistent.

A. Reduction
The aim of reduction is to replace a box B = [a; b] by a

smaller box in a way that we drop only points which will not
be required for finding an ε-optimal solution. If U([a; b]) <
f(xbest) + ε, the box is not relevant for the further execution
of the BRB algorithm (see Line 4 of Algorithm 1), and we can
set reduce(B) = ∅. Otherwise, in analogy to [11, Sec. 7.4],
we set reduce(B) = [a′; b′] with

a′ = b−
∑N

n=1
ϕn(bn − an)en (15)

b′ = a′ +
∑N

n=1
ψn(bn − a′n)en (16)

where we can use bisection search to find

ϕn = sup
ϕ∈ ]0;1]

F (b− ϕ(bn − an)en, a) ≥ f(xbest) (17)

ψn = sup
ψ∈ ]0;1]

F (b, a′ + ψ(bn − a′n)en) ≥ f(xbest). (18)

Performing a reduction can reduce the number of iterations
because the convergence of the boxes towards singletons might
be accelerated, but it increases the computational complexity of
each iteration. Whether or not the reduction step is beneficial
in terms of the overall computational cost, thus depends on
the problem under consideration.

IV. RATE-REGION WITH TIME-SHARING

In general, nonconvex optimization problems have a nonzero
duality gap, meaning that the optimal value of the dual
minimization (see Section IV-A) is not equal to the optimal
value of the primal maximization, but can only serve as an
upper bound. However, it was shown in [9], [15] that the
duality gap of nonconvex rate maximization problems vanishes
if time-sharing is allowed. In Section IV-B, we solve the
Lagrangian dual problem of (5) with the help of the cutting
plane method, we recover a primal solution, and we give an
intuitive justification for the vanishing duality gap. The arising
nonconvex subproblems are solved using mixed monotonic
programming in Section IV-C.

A. Dual Approach

The Lagrangian dual problem of (5) reads as

min
µ≥0
λ≥0

max
L∈N,R∈R
τ≥0:1Tτ=1

(
1− µTρ

)
R +

2∑
k=1

λkPk +
L∑
`=1

τ`max
X (`)

2∑
k=1

(
µkrk(X (`))− λkp(`)k

)
(19)

with dual variables µ = [µ1,µ2]
T and λ = [λ1,λ2]

T. We have
exploited that X (`) can be optimized separately for each `, and
we note that these inner problems are all equivalent. Using
this observation and the fact that 1Tτ = 1, it follows that the
choice of L and τ is arbitrary. Moreover, ρTµ = 1 must hold
in the optimum of the outer minimization in (19) since the
maximization over R would be unbounded otherwise.

We thus obtain the simplified formulation

min
µ≥0,λ≥0
ρTµ=1

2∑
k=1

λkPk + fµ,λ(X ?(µ,λ)) (20)

where

X ?(µ,λ) =
(
argmax
X

fµ,λ(X ) s. t. (4c)–(4d)
)

(21)

with

fµ,λ(X ) =
2∑
k=1

(µkrk(X )− λkpk). (22)

B. Outer Problem and Primal Recovery

To solve the dual problem (20), we can apply the cutting
plane method [16], [17], which successively refines outer
approximations

min
µ≥0,λ≥0,z∈R

ρTµ=1

2∑
k=1

λkPk + z (23a)

s. t. z ≥ fµ,λ(X (`)) ∀` ∈ {1, . . . ,L}. (23b)

For given constant strategies X (`), this is a linear program in
the variables µ, λ, and z. By solving for the optimal µ? and λ?,
setting X (L+1) = X ?(µ?,λ?), and incrementing L, a refined
approximation is obtained. Evaluating X ? requires solving the
inner problem (21), which is discussed in Section IV-C.
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To recover a solution of the primal problem (5), it is proposed
in [17] to consider the dual linear program of the cutting plane
problem (23), which is in our case given by2

max
τ≥0,R∈R
1Tτ=1

R s. t.
L∑
`=1

τ` rk(X (`)) ≥ ρkR, ∀k (24a)

L∑
`=1

τ` p
(`)
k ≤ Pk, ∀k. (24b)

Using (...)? to denote the optimal value of (...), we have

(5)?
(a)
≥ (24)?

(b)
= (23)?

(c)→ (19)?
(d)
≥ (5)? (25)

where (a) holds since (24) obviously delivers a feasible time-
sharing strategy, (b) is the zero duality gap of linear programs
[17], (c) is the convergence of the cutting plane method, and
(d) is so-called weak duality, which always holds [17]. This
implies that (19)? = (5)?, i.e., the time-sharing problem has
zero duality gap (as expected due to [9], [15]), and that the
method converges to a globally optimal time-sharing solution.

C. Inner Problem
Monotonic optimization methods for weighted sum rate

maximization under power constraints pk ≤ Pk were derived
in [6], [7], but the inner problem (21) is different in two
respects. On the one hand, the transmit powers pk in (21)
are unconstrained, and on the other hand, they occur in the
objective function fµ,λ, which is the difference of a weighted
sum rate and a weighted sum power. While [6] could directly set
pk = Pk since this was shown to be optimal [5, Proposition 1],
we have to keep the powers as optimization variables.

According to [19], there exists a pair ζ1, ζ2 ∈ [0; 1] such that
the optimal normalized beamforming vectors can be written as

bk = b̃k ‖b̃k‖
−1
, b̃k = ζkb

MRT
k + (1− ζk)bZF

k , (26)

bMRT
k = hkk ‖hkk‖−1, bZF

k = Π⊥hjk
hkk ‖Π⊥hjk

hkk‖
−1

(27)

where Π⊥hjk
= IMk

− hjkh
H
jk

hH
jkhjk

is the orthogonal projection onto
the orthogonal complement of the span of hjk.

We can rewrite the achievable rates (3) as functions3

rk = log2

(
1 +

pkαk(ζ)

σ2 + pjβj(ζ)

)
(28)

of the transmit powers and the auxiliary variables ζ1,ζ2, where

αk(ζ) = |hH
kkbk|2 =

(ζkγkk + (1− ζk)γkj)2

1− 2ζk(1− ζk)(1− γkj

γkk
)
≥ 0, (29)

βk(ζ) = |hH
kjbj |2 =

ζ2kδ
2
kjγ
−2
kk

1− 2ζk(1− ζk)(1− γkj

γkk
)
≥ 0 (30)

2The value L is obtained from the execution of the cutting plane algorithm,
but usually, only few strategies obtain nonzero weights τ`. There always exists
an optimal time-sharing solution with no more than 4 strategies [18].

3We could also write rk = log2(σ
2 + pjβj(ζ) + pkαk(ζ))− log2(σ

2 +
pjβj(ζ)) and apply the BRB algorithm for DM problems [11, Sec. 7], but it
is easy to verify that bounding via the MMP formulation is always tighter. As
good bounds are crucial for the efficiency [11, Sec. 7.5], the MMP method
leads to faster convergence of the upper bound maxB∈B U(B) to the optimum.
The quantitative gain depends, i.a., on problem parameters and the accuracy ε.

with γkk = ‖hkk‖, γkj = ‖Π⊥hjk
hkk‖, and δkj = |hH

kkhkj |
are obtained after plugging in the optimal beamforming vectors
[6]. As shown in [6], αk(ζ) and βk(ζ) are nondecreasing in
both components of ζ.

Using this result, it is easy to verify that

F
([
ζ
p

]
,
[
ξ
q

])
=

2∑
k=1

(
µk log2

(
1 +

pkαk(ζ)

σ2 + qjβj(ξ)

)
− λkqk

)
(31)

is an MM function for (22). The remaining task is now to
identify a vector pmax in a way that it is guaranteed that the
optimal p lies within [0; pmax]. Then, (21) can be solved using
the BRB method for MMPs (Algorithm 1) with xmin = 0 and
xT

max = [pTmax, 1, 1]
T.

To find an initialization pmax, consider the function

f̂k(pk) = µk log2

(
1 +

pk‖hkk‖2

σ2

)
− λkpk (32)

where the rate has been replaced by the optimal rate in an
interference-free scenario. This concave function is maximized
by p?k = µk

λk ln(2) −
σ2

‖hkk‖2 , and we have

fµ,λ(X ) ≤
2∑
i=1

f̂i(pi) ≤ f̂j(p?j ) + f̂k(pk)
(∗)
≤ 0 (33)

with (∗) for all pk ≥ pk,0, where pk,0 is the largest root of
the concave function pk 7→ f̂j(p

?
j ) + f̂k(pk), which can be

easily found, e.g., by Newton’s method. By choosing pmax =
[p1,0, p2,0]

T, we can thus be sure that the optimal value of (21)
is contained in the initial box of the BRB method.

D. Remark on the Implementation

A noteworthy aspect is that the inner problem is unbounded
if λk = 0 for some k, and no sensible new inequality for
(23b) is obtained then. For an implementation, we thus have to
replace the constraint λ ≥ 0 by λ ≥ ν1 with ν > 0. To ensure
that the constraint does not become too restrictive, a small
value of ν is preferable, but it has to be considered whether
the resulting potentially small values of λk lead to numerical
instabilities in the solver for the inner problem. Indeed, we have
observed in numerical experiments that a branch-and-bound
algorithm without reduction step can need orders of magnitude
more iterations in that case, even leading to memory issues
due to the high number of boxes to be stored. The reason for
this seems to be that the initial box constructed at the end of
Section IV-C grows significantly when the dual variables λk get
small. Fortunately, the reduction step proposed in Section III-A
solves this issue by quickly reducing the size of the boxes, so
that choosing a small ν is not problematic anymore.

V. NUMERICAL EXAMPLE

Even though the MMP approach allows us to solve the
nonconvex subproblems within a reasonable amount of time,
it is clear that the complexity of the method is too high for
online application. Instead, it can be used in offline simulations
to assess the ultimate limits of the considered coding scheme,
to benchmark other, less complex algorithms, and to study
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Fig. 1. Achievable rate regions at an SNR of 10dB for a particular channel
realization (scenario from [8, Fig. 1], channel H(1) in [8, Table II]).

fundamental aspects of the considered system model. As
an example, we show how the method can be applied to
numerically study the gap between the convex hull formulation
and time-sharing, and to compare proper and improper Gaussian
transmit signals.

In [8, Fig. 1], the globally optimal pure strategy with
proper Gaussian signals was computed for a particular channel
realization in the two-user MISO interference channel. This
rate region is shown in Fig. 1 along with its convex hull, i.e.,
for the case where the rates may be averaged over time. For
the case where both the rates and the transmit powers may
be averaged, we have used the method from Section IV to
compute the significantly larger time-sharing rate region.

As demonstrated in [8], a heuristic method with improper
signals can bring a benefit over optimal proper signaling under
a restriction to pure strategies. This conclusion remains valid if
we extend our considerations to the convex hull formulation for
both proper and improper signaling (see Fig. 1). However, the
proposed global optimization method reveals that time-sharing
over proper signaling strategies leads to a larger rate region
than state-of-the-art methods with improper signals.

VI. CONCLUSION AND OUTLOOK

Using a combination of convex programming methods and
a novel framework for mixed monotonic programming, we
have developed an algorithm to compute the globally optimal
TIN rate region for the case with time-sharing and proper
Gaussian signals in the two-user MISO interference channel.
Using this method, we have demonstrated that time-sharing
can bring a significant gain over the convex hull formulation.
Moreover, incorporating the possibility of time-sharing changes
the conclusion of [8] since gains due to the improper signaling
scheme from [8] can no longer be observed when compared
to the time-sharing rate region.

Deriving a method to compute the time-sharing rate region
with improper signaling and testing whether or not this leads to
an even larger rate region is left open for future research. While

the dual approach could still be used, we would need to find a
method to solve the inner problem for the case of improper
signaling in a globally optimal manner. However, note that
it was shown analytically in [18] that improper signaling can
never outperform proper signaling if time-sharing is allowed
in the two-user SISO interference channel. Thus, it should also
be studied whether this result can be extended to the two-user
MISO interference channel, which would mean that deriving
an algorithm for improper time-sharing is not even necessary.
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