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Abstract—Volume alignment is a computationally intensive
task. In Subtomogram Averaging (StA) from electron cryo–
tomograms (CryoET), thousands of subtomograms are aligned to
a reference, which may take hours until days of computational
time. CryoET datasets contain a limited number of noisy projec-
tions, with very low signal–to–until ratio (SNR). The noisy subto-
mograms are aligned to a reference using cross—correlation, an
operation that can be optimized when working with limited angle
tomograms (LAT), as they are sparse in Fourier space.

We propose a projected cross–correlation (pCC) algorithm, a
faster approach to computing the cross—correlation between
a limited angle (sub)–tomogram and a given reference, and we
use pCC to design a new procedure for volume alignment.
pCC employs the projections to calculate the cross–correlation
with lower computational complexity, as it works with a set
2D projections instead of volumes. With this, we propose the
Substacks Averaging (SsA) method as an alternative to the
conventional Subtomogram Averaging (StA).

Our results on test data shows that SsA is considerably faster
than the reference StA implementation: for 41 projections (k =
41) and N = 200, the SsA is 35 times faster, and for N = 320,
is 150 times faster. Furthermore, SsA results in higher precision
of alignment of subtomograms at different noise levels.

I. INTRODUCTION

Cryo electron tomography (CryoET) is an imaging tech-
nique superior in visualizing biological macromolecules in
near–native context [1]. Biological samples are fixed in
vitreous ice and are imaged in an electron microscope at
different angles to obtain a set of two–dimensional projections,
typically over a range of 120◦ with steps of few degrees,
resulting in 41 to 61 images. Furthermore, the total electron
dose used to record the tomogram is limited, as it damages the
sample to be imaged, and it has to be distributed among all
projections. This reduces the number of projections that can be
acquired and lowers the signal–to–noise ratio (SNR) of each
of them. The reconstructed tomograms suffer from elongations
caused by the limited acquisition range, minor artifacts appear
due to the angular steps, and the level of noise is high.

Multiple copies of the target macromolecule can be found
in tomograms in different orientations. The Subtomogram
Averaging (StA) approach [2], [3] aligns subtomograms, small
3D blocks of the tomogram, containing copies of the same
target macromolecule to a common reference and sums them
together to reduce the noise, to compensate for the missing
views, and to obtain higher resolution volumes. Subtomogram
alignment is an exhaustive 3D–rotational and 3D–translational

search to find the transformation parameters between the noisy
limited angle subtomograms and a less noisy fully sampled
reference. Constrained cross-correlation is used as a similarity
metric. The StA technique is computational intensive, as it
has to iteratively align thousands of subtomograms to one or
multiple references.

Here we propose an alternative way to calculate the cross–
correlation and improve the computational performance of the
subtomogram alignment of limited angle tomograms. Instead
of using a subtomogram and a reference, we use the substack,
or set of projections used to reconstruct the subtomogram,
to calculate the 3D cross–correlation. As the subtomograms
come from a limited number of projections, the computational
complexity is reduced. In the conventional StA algorithm, the
alignment part requires O(N3) operations, where N is the
side length of the subtomogram, while the proposed algorithm
requires only O(kN2) operations, where k is the number of
projections. We furthermore add a l1 regularization term to
the cross–correlation, which further improves its accuracy. Our
tests show that, for a typical subtomogram averaging dataset,
our algorithm gives a significant speedup and an increment of
the precision of the alignment.

A. Related Work

A similar approach was proposed by the technique called
Projection–Based Volume Alignment (PBVA) [4]. It is slightly
faster than our approach, as it approximates the cross–
correlation instead of calculating it. However, for the same
reason, the precision of the alignment is limited. We compare
the accuracy and precision of our proposed approach to PBVA.

StructS–XCorr [5] also uses projections and the l1 regu-
larization penalty to improve the cross–correlation, as it is
sparse in real space, and it applies it to find the delay between
audio signals. Even though some ideas and conclusions are
similar to our approach, its motivation and final applications
are different. StructS–XCorr uses random projections to get
the random sampling of compressive sensing and the l1
regularization penalty to reconstruct the cross–correlation. In
our approach, we use the limited number of projections used
in CryoET, and the l1 regularization as an optional cross–
correlation enhancement.

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



II. CROSS–CORRELATION FOR LIMITED ANGLE
TOMOGRAMS

The traditional procedure to calculate the cross–correlation
is to reconstruct the limited angle tomogram and then cross–
correlate it to a reference volume, this operation performed in
Fourier space. The cross–correlation ϕv1,v2

is defined as fol-
lows: given two volumes, v1 and v2, their Fourier transforms
V1 = Fv1 and V2 = Fv2, the element–wise multiplication
operator �, and V2, the complex conjugate of V2, then:

ϕv1,v2 = F−1(V1 � V2). (1)

We must note that in limited angle tomography the Fourier
space is not fully covered (sparse), which turns most of the
element–wise multiplications into multiplications–by–0. We
use the Fourier central slice theorem and the direct Fourier
reconstruction method to calculate the cross–correlation that
takes advantage of this sparsity.

The Fourier central slice theorem states that the projection
pθi , of the volume v in the direction θi, is the inverse Fourier
transform of the slice through V = Fv in the corresponding
direction [6]. We model this theorem by using the matrix Mθi ,
which masks the slice, and the rotation matrix Rθi , which
rotates the masked volume into a 2D plane:

pθi = Proj(v, θi) = F−1(Rθi(Mθi � V )). (2)

The direct Fourier reconstruction method calculates the
volume ṽ, a reconstruction of the volume v from pΘ, a set
of k projections pθi . Our approach defines a matrix WΘ =
(
∑

Mθi)
−1, and applies it in Fourier space to calculate the

reconstruction:

ṽ = Rec(pΘ) = F−1

(
WΘ �

(
k∑
i

(
R−1
θi
F(pθi)

)))
. (3)

If the Fourier space is fully sampled then WΘ is well–
defined. Additionally, if it is sampled uniformly, WΘ can
be found analytically, and it takes the form of the ramp
filter [7]: WΘ = 1

|w| ; if not, WΘ has to be calculated
numerically according to the geometry of the projections [8].
In limited angle tomography the Fourier space is not fully
sampled and Eq. 3 becomes an ill–posed problem. In this
case, the reconstruction method only finds an approximation
of the original volume, and regularization techniques are
used to enhance the reconstruction quality and minimize the
artifacts [9], [10], [11]. In our case, we will not reconstruct a
volume but the cross–correlation between two volumes, which
has the property of being sparse when the two volumes are
similar.

Let ṽ = Rec(pΘ) be a limited angle tomogram, and v, a
reference volume, then a projection of the cross–correlation

ϕṽ,v = F−1(F ṽ �Fv) in the direction θi is:

ϕ
(θi)
ṽ,v = Proj(ϕṽ,v, θi)

= F−1(Rθi(Mθi � (Ṽ � V )))

= F−1(Rθi(Ṽ � (Mθi � V )))

= F−1(Rθi((R
−1
θi
Pθi)� (Mθi � V )))

= F−1(Pθi �Rθi(Mθi � V ))

= F−1(Fpθi �FProj(v, θi))
= ϕpθi ,Proj(v,θi). (4)

Equation 4 shows that the projection of the cross–correlation
ϕṽ,v in the direction θi is the cross–correlation between
the projections of ṽ and v in the corresponding direction.
Following this result, we can reconstruct ϕṽ,v from a set of
projections pΘ, as we ssuggested previously [12]. Let pΘ be
a set of 2D projections of ṽ, and v, a 3D volume used as a
reference, then the cross–correlation ϕṽ,v can be calculated
by reconstructing a set of 2D cross–correlations between each
projection pθi and a corresponding projection of v:

ϕṽ,v = Rec(ϕpΘ,Proj(v,Θ)). (5)

We must note that the cross–correlation function takes the
form of a delta Dirac function when the two volumes are
mostly similar. We can use this knowledge to enhance the
reconstruction of ϕṽ,v by adding the l1 penalty. Then, to
calculate the cross–correlation we must solve:

argmin
ϕṽ,v

||Proj(ϕṽ,v,Θ)− ϕpΘ,Proj(v,Θ)||22 + ||ϕṽ,v||1 (6)

Solving equation 6 involves the reconstruction of ϕṽ,v
multiple times. To save computation time we rewrite it as
an enhancing procedure instead of a reconstruction, then, the
enhanced cross–correlation ϕ∗ is calculated by solving:

argmin
ϕ∗

||ϕ∗ − ϕṽ,v||22 + ||ϕ∗||1. (7)

We use the Alternating Direction Method of Multipliers
(ADMM) to solve it [13]. Let Sλ() be the shrinkage function
as defined for the ADMM, λ, the regularization parameter, and
ρ, the fidelity coefficient; then the formulas for the ADMM
iteration are:

xj+1 =
ϕṽ,v + ρ(zj − uj)

1 + ρ
(8)

zj+1 = Sλ(xj+1 + uj) (9)
uj+1 = uj + xj+1 − zj+1 (10)

The projected cross–correlation (pCC), defined in equation
5, and the regularized projected cross–correlation (pCC reg),
defined in equation 7, are the foundations of the proposed
method for alignment of limited angle tomograms. They lower
the computational complexity of the cross–correlation from
O(N3) to O(kN2) for the computationally intensive opera-
tions. The reconstruction part is the only O(N3) operation,
but its computational complexity can be lowered if we know
the maximal range of shifts between the volumes. In this case,
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(a) Alignment with cross–correlation

(b) Alignment with projected cross–correlation

Fig. 1. Comparison of alignment methods for volumes. The operations over
the gray background are repeated multiple times for different values of φ.
These schemes show that the proposed method works mainly with a set of
2D projections instead of 3D volumes.

we replace the full reconstruction part with a localized one
with lower computational complexity, which also reduces the
number of operations of the ADMM iteration.

III. ALIGNMENT FOR LIMITED ANGLE TOMOGRAPHY

The current procedure to align a pair of volumes involves the
exhaustive search of orientation and shifts which maximizes
the cross–correlation between the aligned volumes. Given a
set of possible orientations Φ, the reference volume v is
transformed to Fourier space and rotated φ ∈ Φ degrees.
Then, the artifacts from the limited angle tomograms are
compensated and the cross–correlation is calculated (Fig. 1a).
As we mentioned before, the Fourier transform of a limited
angle tomogram is sparse and we can use the pCC (Equation
5) [12] or the pCC reg (Equation 7) to speed up the alignment.

It is straight forward to demonstrate that the rotation of
the reference volume can be embedded in the projection
procedure. With this in mind, the newly proposed method
of alignment of volumes starts by projecting the reference
volume v in the direction of φΘ (where RφΘ = RφRΘ).
Each projection is cross–correlated with its corresponding
projection pθi , and a region of interest for 3D cross–correlation
is reconstructed using the localized algorithm (Fig. 1b). We
named this method Substack (alignment and) Averaging (SsA),
as in it works with stacks (set of projections) instead of
subtomograms.

A key part of SsA is the usage of a fast localized recon-
struction algorithm. Our implementation uses Algorithm 1, a
weighted back projection algorithm [7] where the weights are
applied in Fourier space and the reconstruction is done in real
space only in a Region of Interest (ROI). This algorithm can
be accelerated by GPUs, as each value of the cross–correlation

is calculated independently and the interpolation functions can
be implemented using the texture memory on the GPU.

Algorithm 1: Localized Reconstruction (Rec ROI)
Input : PΘ, a set of K projections in Fourier space;

Θ, a set of K angles;
cL, a set of L coordinates (ROI).

Output: rec, the reconstruction on the ROI.
rec← 0;
W ← CreateRampFourierSpace();
p← F−1 (W � PΘ);
for l← 1 to L do

for i← 1 to K do
rec[l]← rec[l]+Interp(pi,RθicL[l]);

A. Substack Alignment and Averaging (SsA)
The subtomogram averaging method (StA) [3] consist of

two steps: aligning a large set of volumes, or subtomograms,
against a reference; and averaging the subtomograms to obtain
a high SNR volume. The proposed method, the Substacks
Alignment and Averaging (SsA), aligns a set of projections, or
substacks, to a reference volume, and uses the direct Fourier
reconstruction method [8] to obtain the final volume. The
alignment part is computational intensive for both StA and
SsA, but the usage of the projected cross–correlation (pCC)
lowers the execution time dramatically for the later.

Algorithm 2 describes the alignment procedure of the SsA
method. It uses regularized projected cross–correlation, which
can be enabled or disabled by setting the value of I , the
number of ADMM iterations. In a similar way to Algorithm 1,
the alignment may be accelerated on GPU. Most of the opera-
tions work in an element–wise fashion, including the ADMM
part. Additionally, the function Max() and ArgMax() can
be implemented using atomic operations; this way recϕ, x, u
and z can be stored in registers instead of shared or global
memory. The algorithm is simple and easy to implement.

IV. EXPERIMENTAL RESULTS

We performed two computational experiments in order to
evaluate the performance of our proposed algorithms. First, we
verify the accuracy of the angular search procedure using pCC
and pCC reg, and we compare the results with two reference
algorithms: PBVA and StA. In the second experiment, we
compare the execution times of the two proposed algorithms
and the current implementation of StA.

The cross–correlation algorithms were implemented in
MATLAB R2018b and optimized using MEX interfaces for
C/C++ code. A prototype of the SsA method was implemented
also in MATLAB, using the Parallel Computing Toolbox
to call CUDA subroutines. All the tests were executed on
a workstation equipped with an Intel Xeon E5-2630 CPU
(16 physical cores, 2MB cache memory), 158GB of RAM
memory, 7 GeForce GTX TITAN–X (12GB RAM) GPUs, and
running CentOS Linux 7.4.

The reference volume used for the experiments is a Leish-
mania ribosome bound to paromomycin (PDB 6AZ1), origi-
nally solved using single particle cryo–EM [14]. The volume
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Algorithm 2: Substack Averaging: Alignment
Input : pΘ, a set of K 2D projections;

v, a reference volume;
cL, a set of L coordinates (ROI);
Φ, a set of angles (angular search);
I, λ, φ, optional ADMM parameters.

Output: φ∗, t∗ = argmax
φ,t

{ϕpθi ,v}

φ∗ ← 0; t∗ ← 0,mφ ← 0;
PΘ ← FpΘ; V ← Fv;
foreach φ ∈ Φ do

/* projected cross--correlation */
VφΘ

← Proj(V, φΘ);
recϕ ← RecROI(PΘ � VφΘ

, φΘ, cL);
/* ADMM (optional) */
if I > 0 then

x← 0;u← 0; z ← 0;
for i← 1 to I do

x← recϕ+ρ(z−u)

1+ρ
;

z ← Shrink(x+ u);
u← u+ x− z;

recϕ ← x;

/* update output values */
mϕ ← Max(recϕ);
if mϕ > mφ then

mφ ← mϕ; t∗ ← ArgMax(recϕ); φ∗ ← φ;

has a size of 3843 voxels, with a voxel size of 1.053 Å,
with a reported resolution of 2.7 Å. It was resized to a 1203

volume for the first experiment, and to multiple volume sizes
for the second one. Each volume was projected in 187 different
orientations to obtain the substack datasets for the SsA, and
then reconstructed to get the subtomogram datasets for the
StA. The projection procedure followed two typical tilting
schemes in CryoET: 41 and 61 projections (k = 41, k = 61),
from −60◦ to +60◦ in both cases, with 3◦ and 2◦ steps,
respectively. Additionally, we tested different unconventional
tilting schemes to evaluate the effect of the missing views.
Subtomogram were generated from the corresponding sub-
stacks using a traditional weighted back-projections algorithm.

A. Test 1: detecting optimal alignment parameters

In this test, we used the proposed pCC and pCC reg
algorithms to perform the angular search. As reference al-
gorithms we used the Projection-Based Volume Alignment
(PBVA) [4], which uses an approximation of ϕ; and the
alignment by cross–correlation implemented in Dynamo [3].
The angular search tests different orientations with an initial
angular resolution of 7.5◦, to a final resolution of 0.94◦.
And, besides using different tilting schemes, we corrupted the
projections with different levels of Gaussian noise.

The result of the experiment (Table I) shows that the
pCC and pCC reg have higher alignment precision than
the already accurate cross–correlation, which leads to better
reconstructions (Fig. 2). The difference is higher when the
tilting schemes promotes larger missing wedges (-40:5:40 or
-36:3:36), or when the SNR is low. These three algorithms
have a maximum error closer to or lower than the finer angular
search step used. On the other hand, the PBVA has a larger

TABLE I
ANGULAR ERROR OF PARTICLES ORIENTATIONS ESTIMATED BY

DIFFERENT ALGORITHMS (IN DEGREES, THE LOWER THE BETTER).

CC pCC pCC reg PBVA
k Tilting SNR mean max mean max mean max mean max

−37dB 0.21 1.0 0.15 1.0 0.14 1.0 0.43 3.4
-40:5:40 −55dB 0.29 1.3 0.17 1.0 0.17 1.0 0.42 3.4

−61dB 0.44 1.3 0.26 1.0 0.27 1.0 0.45 3.5
−36dB 0.14 0.9 0.14 0.9 0.14 0.9 0.38 2.4

17 -64:8:64 −55dB 0.25 0.8 0.17 0.8 0.17 0.8 0.41 2.4
−61dB 0.45 1.3 0.30 1.0 0.30 1.0 0.46 2.4
−36dB 0.17 0.9 0.14 0.8 0.14 0.8 0.38 1.9

-88:11:84 −55dB 0.31 1.0 0.16 0.8 0.17 0.8 0.39 2.4
−61dB 0.35 2.9 0.28 1.0 0.28 1.0 0.44 3.6
−36dB 0.22 1.0 0.14 1.0 0.14 1.0 0.45 3.5

-36:3:36 −53dB 0.28 1.0 0.15 1.0 0.16 1.0 0.48 3.5
−59dB 0.41 1.4 0.24 1.0 0.26 1.0 0.50 3.5
−35dB 0.14 0.9 0.14 0.9 0.14 0.9 0.38 1.9

25 -60:5:60 −53dB 0.23 0.9 0.15 0.9 0.15 0.9 0.39 2.4
−59dB 0.38 1.1 0.24 0.9 0.26 1.0 0.41 2.4
−35dB 0.15 0.8 0.14 0.8 0.14 0.8 0.36 2.4

-84:7:84 −54dB 0.25 0.8 0.15 0.8 0.15 0.8 0.39 2.4
−60dB 0.37 1.0 0.24 1.0 0.25 1.0 0.43 2.9
−34dB 0.14 0.9 0.14 0.9 0.14 0.9 0.38 1.9

41 -60:3:60 −51dB 0.18 0.8 0.15 0.9 0.14 0.9 0.39 2.1
−57dB 0.31 0.9 0.20 0.9 0.20 0.9 0.43 3.4
−34dB 0.14 0.9 0.14 0.9 0.14 0.9 0.39 1.9

61 -60:2:60 −49dB 0.19 0.9 0.14 0.9 0.15 0.9 0.37 1.9
−55dB 0.29 0.9 0.18 0.9 0.18 0.8 0.40 2.7

(a) Reference (b) StA

(c) SsA (d) FSC

Fig. 2. Comparison of a central slice of 3D reconstructions. (a) Reference vol-
ume [14]. (b) Conventional StA reconstruction. (c) Reconstruction using SsA.
(d) Fourier Shell Correlation between the reference and the reconstructions.

alignment error, with maximum error values up to four times
larger than the finer angular search step used.

B. Test 2: computational performance on GPU

In this test we compare the execution time of the alignment
part of the subtomogram averaging (StA) and the proposed
substacks averaging (SsA). We use the software package
Dynamo [3] as the reference implementation of the StA, as

2019 27th European Signal Processing Conference (EUSIPCO)



(a) StA, SsA (b) SsA: pCC, pCC Reg

Fig. 3. Comparison of the execution time between Subtomogram Aver-
aging (StA) and the proposed Substack Averaging (SsA) algorithm. 187
particles were aligned using 7 GPUs. The StA implementation uses cross–
correlation [3] while the SsA uses the proposed pCC and pCC Reg algorithms.

it is widely used by the CryoET community. It was written in
MATLAB, C++ and CUDA, and it uses the GPUs to speed
up the alignment process. Our prototype implementation of
the proposed SsA method uses the same languages and also
uses the GPUs. As the performance of the SsA depends on
the number of projections, we report the execution time in
function of k instead of the tilting schemes.

The execution time for StA grew rapidly from minutes to
hours with increasing the box size (Fig. 3), while SsA method
kept it in the range of minutes (< 8min). This results in a
substantial speed up, especially for larger boxes, where the
SsA is 92 times faster than the StA, for k = 61, and up
to 146 times faster, for k = 17. The speed up follows the
theoretical reduction of computational complexity of align-
ment, from O(N3), using cross–correlation, to O(kN2), using
the proposed pCC and pCC reg. Additionally, the usage of
ADMM barely increased the execution time.

V. CONCLUSIONS

In this document we presented the projected cross–
correlation (pCC), and an enhanced version of it, the regular-
ized projected cross–correlation (pCC reg), alternative ways
to calculate the cross–correlation. Using them, we develop
a fast alignment algorithm for limited angle tomography,
which aligns the subtomograms using substacks instead of the
subtomogram itself. This lowers the computational complexity
of the alignment algorithm from O(N3) to O(kN2), where k
is the number of projections. Experimental results confirms
that using pCC yields the same precision of alignment as
using the conventional cross–correlation (Table I) but at a
significantly increased speed.

pCC and pCC reg have the same accuracy, but the later has
higher precision, as its cross–correlation peak is sharper (Fig.
4). Even though it does not improve the alignment accuracy,
the pCC reg can be used in the branch-and-bound aproach for
angular search [15] to reduce the number of angles to evaluate.
This approach iteratively uses smalled angular steps on a set
of angles defined by the best angles of the previous iteration.

(a) ϕ (b) PBVA (c) pCC (d) pCC reg

Fig. 4. Example of the angular search results for the alignment of one
subtomogram/substack. The cross–correlation (ϕ) and the pCC are equivalent,
while the pCC reg has a higher precision. In the other hand, the PBVA shows
acceptable accuracy but lower precision.
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