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Abstract—This paper deals with the tensor-based Brain Source
Imaging (BSI) problem, say finding the precise location of
distributed sources of interest by means of tensor decomposition.
This requires to estimate accurately the rank of the considered
tensor to be decomposed. Therefore, a two-step approach, named
R-CPD-SISSY, is proposed including a rank estimation process
and a source localization procedure. The first step consists in
using a modified version of a recent method, which estimates
both the rank and the loading matrices of a tensor following
the canonical polyadic decomposition model. The second step
uses a recent physics-driven tensor-based BSI method, named
STS-SISSY, in order to localize the brain regions of interest.
This second step uses the estimated rank during the first step.
The performance of the R-CPD-SISSY algorithm is studied using
realistic synthetic interictal epileptic recordings.

I. INTRODUCTION

Brain Source Imaging (BSI) aims at both reconstructing the

brain electrical activity from scalp ElectroEncephaloGraphy

(EEG) recordings and identifying the position of the active

source regions. In pre-surgical evaluations of patients suffering

from drug-resistant partial epilepsy, brain source imaging

techniques help to delineate the epileptogenic zones to be

resected in order to control the epileptic seizures. To this end,

several tensor-based approaches have been presented over the

last decades [1]–[4]. In classical approaches, first the tensor

is decomposed in order to identify the spatial signature of

the data and the location of distributed sources is derived.

These approaches suffer from several drawbacks including

inaccuracy, difficulties in identifying close and correlated

sources, and high computational complexity. The accuracy

of these two-step source localization methods highly depends

on the effieciency of the first step and more particularly on

that of the rank estimation procedure. Indeed, in the case of

epileptic EEG recordings, as the number of epileptic patches

is unknown, this value should be estimated.

Unfortunately, estimating the rank of a given tensor is

usually hard and in some cases NP hard. This problem has

been adressed in the literature [5]–[7]. The R-CPD method

[8] [9] appears to be more robust with respect to the presence

of noise than the other approaches. Another way of improving

the source localization process consists in combining the two

steps of classical tensor-based BSI methods leading to the

STS-SISSY algorithm [10].

In this paper, we propose to improve the performance of

the R-CPD method by using the Minimum Description Length

(MDL) approach [11]–[13]. Then, we combine this modified

R-CPD technique with STS-SISSY in order to design a new

two-step tensor-based BSI appraoch named R-CPD-SISSY.

Computer results show the good behavior of R-CPD-SISSY

especially for low SNR values.

II. PROBLEM FORMULATION

We consider N × T scalp EEG recordings generated by D
brain current dipoles forming the source space. The electrical

activity is denoted by matrix S̃ ∈ R
D×T . The EEG recordings

are the superposition of these dipole signals: X = GS̃ where

the lead-field matrix G ∈ R
N×D characterizes the propaga-

tion of the activity of each dipole within the head volume.

Considering that the EEG recordings are mainly generated by

R distributed sources and refering the average signal sr to the

r-th source, data can be modeled as [14]:

X =
R∑

r=1

hrsTr + Xb (1)

where the lead-field vector hr = Gψr is the spatial mixing

vector of the r-th distributed source for which sr denotes the

average activity of its dipoles, and where ψr indicates the

sparse coefficient vector whose nonzero elements describe the

contribution of the associated grid dipoles to the distributed

source. The signals Xb characterize the background activity

emitted by dipoles of non-distributed sources. In this paper,

different intensities of noisy background are added to the

simulated epileptic data to obtain noisy simulated EEGs with

different SNR values. The BSI problem consists in identifying

the D × R sparse matrix Ψ = [ψ1, ...,ψR].

III. METHODS

In order to build a tensor from matrix X, an additional

dimension from the measurements is collected. As EEG data

contain repeated interictal epileptic spikes during the time, it is

possible to stack the spike-like signals observed at P different
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time samples along the third dimension of the tensor X and

to construct a Space-Time-Spike (STS) tensor:

X ≈
R∑

r=1

hr ◦ sr ◦ cr (2)

where cr ∈ R
K represents the spike amplitudes of the

different realizations. This model is the Canonical Polyadic

Decomposition (CPD) and the matrices H = [h1, ..., hR],
S = [s1, ..., sR] and C = [c1, ..., cR] denote the loading

matrices of the space-time-spike tensor X . The two steps of

the R-CPD-SISSY are presented below.

A. Rank estimation using MDL

The R-CPD method [8] extracts the loading matrices of H,

S and C by solving the following minimization problem:

min
H,S,C

‖H‖2,1 + ‖S‖2,1 + ‖C‖2,1 + ‖H‖1,2 + ‖S‖1,2 + ‖C‖1,2

s.t. X =

R∑
r=1

hr ◦ sr ◦ cr (3)

The notations ‖.‖2,1 and ‖.‖1,2 are the mixed-norms L2,1

and L1,2. In [5], it is proved that minimizing the mixed-norms

led to minimizing the nuclear norm. The nuclear norm is

considered as a good convex envelope of the matrix rank. For

a given matrix X (I×J) the mixed norms ‖.‖2,1 and ‖.‖1,2 are

computed as Tr[XT AX] and Tr[XBXT ], respectively, where

A and B are diagonal matrices given by Aii = 1/
√∑J

j=1 X
2
ij

and Bjj = 1/
√∑I

i=1 Xij
2. The (i,j)-th entry of X is denoted

as Xij . The minimization problem (3) can be solved by

minimizing the following Augmented Lagrangian function:

L = λ1,2{ Tr(HB(1)HT ) + Tr(SB(2)ST ) + Tr(CB(3)CT )}
+λ2,1{ Tr(HT A(1)H) + Tr(ST A(2)S) + Tr(CT A(3)C)}

+ < Y ,X −
R̂∑

r=1

hr ◦ sr ◦ cr > +
ρ

2
‖X −

R̂∑
r=1

hr ◦ sr ◦ cr‖2F
(4)

where λ1,2, λ2,1 and ρ are penalty parameters and Y denotes

the tensor multiplier. The penalty parameters are used to

manage a trade-off between data-fit and prior knowledge. They

also depend on the noise level, since the difference between

recovered and estimated data is expected to be larger as the

SNR value decreases. The update functions of loading matrices

are calculated by vanishing the derivatives of the L with

respect to the H, S and C. The loading matrices and the tenor

multiplier are updated as following:

vec(H) = [ I ⊗ ( 2λ2,1 A(1) ) + 2λ1,2 B(1)

+ ρ (C � S)T (C � S) ⊗ I ]−1

vec[ (Y(1) + ρX(1))( C � S ) ] (5)

vec(S) = [ I ⊗ ( 2λ2,1 A(2) ) + 2λ1,2 B(2)

+ ρ (C � H)T (C � H) ⊗ I ]−1

vec[ (Y(2) + ρX(2))( C � H ) ] (6)

vec(C) = [ I ⊗ ( 2λ2,1 A(3) ) + 2λ1,2 B(3)

+ ρ (S � H)T (S � H) ⊗ I ]−1

vec[ (Y(3) + ρX(3))( C � H ) ] (7)

Yk+1 = Yk + ρk [X − (

R∑
r=1

hr ◦ sr ◦ cr)k+1] (8)

where X(i) and Y(i) denote the i − th unfolding matrices of

the tensors X and Y , respectively. In (8), k represents the

iteration number. The parameter ρ in (k + 1)− th iteration is

updated as ρk+1 = μρk for μ > 1.

Using the modified MDL (iMDL) [15], the rank of the third-

order tensor X can be estimated. First, the singular values σi

of matrix H are sorted in descending order, i.e σ1 ≥ σ2 ≥
... ≥ σR. Then, the Rest can be calculated as follows:

Rest = argmin
n

−2log

(∏N
i=1+n σi

1/(N−n)

1

N − n

∑N
i=1+n σi

)R̂(N−n)

+r(2N − n)log(R̂) (9)

where σi represents the i-th highest singular value and (N×R̂)
is the size of the estimated matrix Ĥ and where R̂ denotes

the Over-Estimated(O-E) rank. Using this method, Rest is

computed by finding the break point of singular value curve

of matrix Ĥ.

B. Source localization using STS-SISSY

The single-step STS-SISSY algorithm [10] utilizes the fused

Lasso regularization to solve the BSI problem [14]:

min
H,Ψ

||X(1) − H(C � S)�||+ λ (‖TΨ‖1 + α‖Ψ‖1)
s.t. H = GΨ (10)

where X(1) ∈ R
N×TR is the mode-1 unfolding matrix of the

tensor X , T denotes the total variational operator, λ and α
stand respectively for the regularization and penalty param-

eters. This problem was solved using Alternating Direction

Method of Multipliers (ADMM) [16] wherein all matrices

were updated at each iteration in an alternative way until

convergence or a maximal number of iterations are reached.

At the end of the ALS algorithm [17], in addition to the

matrices H, S, and C, estimates of all distributed sources are

directly available and correspond to the columns of the matrix

(for more detailes see in [10]). Despite the efficiency of this

method, it needs the true rank to be efficient. Therefore, we

use STS-SISSY with the estimated rank of the previous step.
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IV. DATA AND PERFORMANCE CRITERIA

The performance of R-CPD-SISSY algorithm is assessed on

realistic simulated interictal epileptic EEG data and compared

to STS-SISSY method in term of source localization accuracy.

To this end, scalp epileptic EEG for N = 91 electrodes,

T = 180 time instants at the sampling rate of 256 Hz,

and K = 50 epileptiform spikes are generated. The source

space is composed of 19626 dipoles located on the cortical

surface and the lead-field matrix is generated using the ASA

software. The epileptic source regions are modeled by two

epileptic patches: one located on the Inferior Frontal gyrus

(InfFr) and another patche on the Occipital-Temporal gyrus

(OccTe). Each patch includes 100 grid dipoles corresponding

to a cortical area of approximately 5 cm2. To study the

performance of the proposed method, 50 realizations of the

data are generated. The performance of R-CPD-SYSSY is

evaluated in term of rank estimation and source localization

accuracy: i) two performance criteria, namely the Accuracy

Rate (AR) and the Average Rank Estimation Error (AREE)

are used to evaluate the rank estimation results, and ii) the

Dipole Localization Error (DLE) [1] is employed to calculate

the accuracy of the source localization.

A. Performance criteria for rank estimation

These criteria are utilised to assess the rank estimation

performance. The AR computes the number of times the

estimation is done exactly. This criterion is calculated as:

AR : T imes of R = Rest (11)

Regarding the AREE criterion, it measures the error between

the exact rank and the estimated one:

AREE :
1

nb of realizations

nb of realizations∑
times=1

|R−Rest|
(12)

B. Performance criterion for source localization

To quantify the efficiency of different source localization

methods, the accuracy of the approaches are computed in

term of Dipole Localization Error (DLE) [1], which presents

a measure of similarity between the original and the estimated

source configuration. The DLE is defined as:

DLE =
1

2L

∑
m∈M

min
l∈M̂

‖pm−pl‖2+
1

2L̂

∑
l∈M̂

min
m∈M

‖pm − pl‖2

where M and M̂ denote the original and estimated sets of

indices of all dipoles of an active patch, respectively. L and L̂
are the numbers of original and estimated active dipoles. pm

is the position of the m-th source dipole. The DLE is averaged

over the 50 realizations.

V. SIMULATIONS

To assess the efficiency of the proposed method, different

intensities of background EEG are added to the simulated

epileptic data with SNR = [-15, -10, -5, 0, 5, 10] dB. We

first evaluate the performance of R-CPD-SISSY, in term of

rank estimation by considering different Over-Estimated (O-

E) ranks including 3, 8 and 20. To do so, the regularization

parameters in (4), λ1,2, λ2,1 and ρ are tuned. To balance the

weights of L12 and L21, we take λ1,2 =
‖H‖2,1
‖H‖1,2λ2,1. Then to

get more accurate results, a large range of values of between

1 to 2000 are given to λ2,1 to choose the one which provides

higher AR and less AREE for each values of SNR. Fig.1 and

Fig.2 provide the values of AR and AREE as a function of

SNR for the different tested (O-E) ranks, respectively. In our

experiment, the true rank R (in (11), and (12)) is 2 related to

the two epileptic sources.

As can be seen in Fig.1, when the (O-E) rank is 3, the

estimated rank, by the step one of the R-CPD-SISSY, is equal

to the true rank for all 50 realizations and all values of SNR.

Consequently, the corresponding AREE in Fig.2 is zero. In

the cases of (O-E) ranks equal to 8 and 20, the proposed

algorithm seems to be very efficient, except for very low

SNR=-15 dB. We can also see in Fig.2 that the AREE values

are small, for all SNRs. This shows that, even if the rank was

not estimated exactly, the obtained value is close to the true

rank. Secondly, to evaluate the accuracy of source localization,

the DLE of R-CPD-SISSY is computed and compared to the

that of STS-SISSY, for different values of SNR and (O-E)

ranks. Note that, for R-CPD-SISSY the estimated rank is

given to the source localization step while the (O-E) rank

is given directly to STS-SISSY method. The DLE results of

both approaches are presented in Fig. 3 as function of SNR

for different (O-E) ranks. As can be seen, the R-CPD-SISSY

clearly outperform STS-SISSY. Indeed, the DLE values for

R-CPD-SISSY approach are significantly less than those of

STS-SISSY, especially for low SNR and larger (O-E) ranks.

This can be also confirmed in Fig. 4, where we illustrate an

example of the BSI results of the both methods for SNR=- 5

dB and (O-E) rank=20. Compared to the ground truth (top of

the figure), the two patches are better localized using R-CPD-

SISSY, even if in STS-SISSY two best factors are manually

chosen among the 20 ones, to reach the best localization

results.
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Fig. 1. AR values for different SNR values and different (O-E) Ranks.
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Fig. 2. AREE for different SNR values and different (O-E) Ranks.

VI. CONCLUSION

A two-step tensor-based approach, was designed to localize

the extended epileptic sources precisely, with estimating the

number of sources. To do so, we estimate the rank in the first

step through a tensor decomposition approach with consider-

ing the group sparsity constraints (R-CPD) followed by MDL.

Then, the estimated rank is used in the second step to local-

ize the sources efficiently. Simulations on realistic epileptic

EEG data demonstrated the superior performance of R-CPD-

SISSY for recovery of distributed sources by giving a robust

estimated rank to the source localization procedure. In other

words, contrary to the state-of-the-art BSI methods, R-CPD-

SISSY can solve the BSI problem without any knowledge

of the expected number of sources. Forthcoming work will

include the automatic estimation of the penalty parameters by

exploiting, for example, the balance between the data-fit terms

and the constraint ones in the cost function.
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Fig. 4. Example of source localization result of R-CPD-SISSY and STS-
SISSY: (O-E) rank = 20 and SNR = -5dB.
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