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Abstract—Light field (LF) images provide rich visual infor-
mation enabling amazing applications, from post-capture image
processing to immersive applications. However, this rich informa-
tion requires significant storage and bandwidth capabilities thus
urgently raises the question of their compression. Many studies
have investigated the compression of LF images using both spatial
and angular redundancies existing in the LF images. Recently,
interesting LF compression approaches based on view synthesis
technique have been proposed. In these approaches, only sparse
samples of LF views are encoded and transmitted, while the
other views are synthesized at decoder side. Different techniques
have been proposed to synthesize the dropped views. In this
paper, we describe subjective quality evaluation of two recent
compression methods based on view synthesis and comparing
them to two pseudo-video sequence based coding approaches.
Results show that view synthesis based approaches provide higher
visual quality than the naive LF coding approaches. In addition,
the database as well as subjective scores are publicly available
to help designing new objective metrics or can be used as a
benchmark for future development of LF coding methods.1

Index Terms—Light field, Image compression, View synthesis,
Subjective evaluation, CNN, Linear approximation

I. INTRODUCTION

Recent years have witnessed the rapid development of
immersive multimedia systems, and light field (LF) imaging is
considered as an attractive representation that can enable these
immersive applications, such as virtual reality, 3D gaming,
view synthesis and depth estimation. LF images provide both
spatial and angular information, allowing more functionalities,
such as free viewpoint change and refocusing. However,
this providing rich information involves a large amount of
data, making its storage or transmission not plausible over
existing bandwidth-limited infrastructure. Therefore, efficient
compression methods are of paramount importance.

Several compression approaches have been proposed in the
literature [1, 2], and a new standard called JPEG PLENO (Part
2) is currently under development by the JPEG standardization
committee, which aims at standardizing light field coding
technologies and associated metadata [3]. Globally, depending
on the coding format and acquisition process, there are two
kinds of LF image compression approaches [4]. The first
coding approach acts directly after the LF acquisition step on

1Dataset and code are available upon request.

the raw LF data, i.e., lenslet image, while the second approach
exploits the 4D representation of the LF image that can be
obtained by applying some specific transformations to the raw
LF data.

For the methods that directly compress the lenslet images,
most of them apply intra coding relying on redundancies ex-
isting in the images [5–7] or use a pseudo-temporal sequence
suitable for standard 2D video encoders [8, 9]. Whereas the
compression approaches based on 4D LF representation, con-
sist of rearranging LF elements (usually sub-aperture views)
in a specific order to produce a pseudo-video sequence, which
is then encoded with a classical 2D video encoder (intra and
inter predictions) [10–14] or using Multi-View extension of
High Efficiency Video Coding (MV-HEVC) [15]. In addition,
different reordering ways have been explored to construct
the pseudo-video sequence including zig-zag, spiral, raster,
rotation and line.

Moreover, by exploiting the redundancy existing between
neighboring views, instead of encoding all the LF views, other
approaches proposed to compress only a small subset of views,
which are subsequently used to reconstruct the other views
at the decoder side. To reconstruct theses non-coded views,
different approaches have been proposed in the literature. For
instance, in [16, 17], depth image-based rendering techniques
have been exploited. Zhao et al. [18] proposed linear approx-
imation prior, where the non-encoded views are approximated
with a weighted sum of coded views. Recently, convolutional
neural networks (CNN)-based approaches have been adopted
to synthesis the non-coded views [19–21], allowing to recover
the whole LF views.

All of these view synthesis based coding approaches have
shown their coding efficiency in terms of rate-distortion perfor-
mance compared to encoding the whole LF views. However,
most of these works considered only objective metrics such
as PSNR and SSIM (Structural Similarity Index) [22] to eva-
luate the coding performance, without taking into account the
subjective quality assessment. Given that these conventional
image quality metrics cannot handle efficiently the distortions
that can be induced from imperfect view synthesis process,
which are quite different from those introduced by image/video
compression, the subjective quality assessment remains the
best and inevitable way to perform the visual quality evalu-
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ation of these LF coding approaches. In addition, the recent
subjective studies conducted for LF image quality assessment
did not consider these kinds of compression methods [4, 23],
especially the CNN-based view synthesis approaches, which
motivates us to supplement these studies.

Consequently, in this paper, we propose to conduct sub-
jective experiments of LF compression methods based on
view synthesis technique. Specifically, four compression ap-
proaches have been considered in this study, two methods
are view synthesis basis, while the remaining are naive LF
coding methods. All these methods have been subjectively and
objectively evaluated. The dataset, including non-compressed
and compressed LF images, along with subjective scores are
provided publicly to facilitate future research works, such
as developing new reliable objective quality metrics for LF
images based view synthesis methods.

The rest of this paper is organized as follows. Section II
presents the LF coding methods considered in this study.
Section III describes the performed subjective experiment,
including the preparation of the test material, environmental
setup and the test methodology. Next, the results and analysis
of subjective evaluation are provided in Section IV. Finally,
Section V concludes the paper.

II. LIGHT FIELD CODING STRATEGIES

The LF contents evaluated in the subjective experiments
were compressed using four coding strategies. Given that
the widely explored coding approach for LF contents is the
pseudo-video sequence coding method, we have therefore
considered two methods from this category. For both coding
methods, all the sub-aperture images are rearranged into a
pseudo-sequence using spiral order scan starting from the
center view, which is then encoded with a classical video
encoder. Two video encoders have been selected for this
purpose, the High Efficiency Video Coding (HEVC) standard
and the Joint Exploration Test Model (JEM) that led to the
starting point of future video coding standard named Versatile
Video Coding (VVC). For HEVC, the HM reference software
(version 16.9) was used, while for the second method the JEM
software (version 7.0) was exploited, both in random access
coding configuration. For both methods, all views are encoded
and we refer to them as HM-All and JEM-ALL for the rest
of this paper. In addition, in order to avoid the darkness and
distorted remote views, only the middle 8 × 8 views were
encoded.

Furthermore, two light field compression methods based
view synthesis have been included in this study. Instead of
coding all views, in these approaches, only sparse samples
of LF views are encoded and transmitted, while the other
views are synthesized at the decoder side. One of the selected
methods is described in [18], where at the encoder side
the views are equally divided into two sets, the selected
reference views set and the dropped views set, that is 32
views each. The selected reference views are then rearranged
into a pseudo-sequence using horizontal zigzag scan order and
compressed with a 2D video encoder standard (JEM in our

implementation). The decoded versions of theses latter views
are used to linearly approximate the dropped views and only
the approximation coefficients are transmitted to the decoder.
At the decoder side, the selected reference views are decoded
and the dropped views are approximated by the weighted sum
of the decoded selected views. For the rest of this paper, we
refer to this method as LA-32.

Finally, the fourth and last method that we included is
the CNN-based view synthesis approach proposed in [19]. In
this method, the authors proposed a learning-based approach
to synthesize new views from a sparse set of input views.
The proposed architecture includes two phases: a disparity
estimator and color predictor, which are performed by two
sequential CNNs. Based on the features extracted from the
sparse input views (four views at the corners), four layers
CNN firstly estimates the disparity of the dropped views. The
second CNN uses all the warped disparity views, derived from
the first CNN, along with few other features to predict the color
and synthesize the dropped views. For training the CNN, we
used 100 LF images, 28 from Stanford Lytro LF dataset [24]
and 72 from California Lytro LF dataset [19]. We split each
sub-aperture view into patches of size 60× 60, which results
in more than 100,000 patches exploited for training. For this
method, which will be referred to as DL-16, 16 sparse views
are encoded with the JEM, while the remaining dropped views
are synthesized by the trained CNN block at the decoder side.

III. SUBJECTIVE EVALUATION

A. Dataset Preparation

A total of ten LF images have been carefully selected for
subjective experiments, six from EPFL Light-Field Image Da-
taset (Bikes, Fountain_&_Vincent_2, Friends-1, Overexposed-
Sky, Rusty-Fence, and University) [25], two from INRIA
Light-Field Image Dataset (Bee1 and Cactus) [26] and two
that we acquired by a Lytro Illum camera, namely Flowers
and KidsHouse. These LF images represent different content,
including indoor and outdoor scenes and a wide range of
colors, textures and depth properties [27]. In order to cover
a wide range of features, the spatial complexity, color features
and the amount of occluded pixels of each LF image have been
analyzed using Spatial Information (SI) [28], ColorFulness
(CF) [29] and occlusion model proposed in [30], respectively.
The Figure 1 shows the values of SI, CF and occlusions for
all the selected images.

Each image was extracted from LF raw file format using
Light Field Matlab Toolbox v0.4 [31], thus providing a 4D
LF of dimensions 15× 15× 434× 625× 4, where 434× 625
represents the resolution of each view, 4 corresponds to the
RGB channels including additional weighting image compo-
nent, while 15 × 15 represents the number of views [25].
As mentioned previously, we only encoded the central 8 × 8
sub-aperture views after being converted to YUV format and
downsampled to 4:2:0 with 10-bit depth.

The ten LF images have been encoded using the previously
described four compression methods at four compression
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Fig. 1. Distributions of the three properties of the selected LF contents.

bitrates, namely R1 = 0.0074 bpp, R2 = 0.0171 bpp, R3 =
0.0384 bpp and R4 = 0.1112 bpp.

B. Environment Setup and Test Methodology

The subjective evaluations were conducted in a laboratory
psychovisual test room, calibrated according to ITU-R BT.500-
13 Recommendations [32], equipped with a controlled lighting
system and the color of all background walls and curtains is
mid-gray. A full HD 27-inch Dell UltraSharp U2717D was
used to display the test stimuli. The distance of the subjects
from the monitor was approximately equal to 7 times the
image height, as recommended in [33].

The subjective experiments have been performed using the
recently introduced methodology, named passive test metho-
dology [4], without refocusing effect, which is out of the scope
of this paper. The methodology is based on Double Stimulus
Impairment Scale (DSIS) [32], where both the non-compressed
reference and stimulus were displayed in a side-by-side arran-
gement on the same monitor. The non-compressed reference
and stimulus were always displayed on the left and right side,
respectively, and the subjects were aware of these positions. In
addition, the LF contents were presented as a video sequence
navigating between the viewpoints. The pseudo-video was
created using horizontal scan, starting from the view in the
left upper corner down, and proceeding from left to right and
right to left in alternate order, which mimics the parallax effect.
In [34], it has been noticed that this visualization technique is
preferred among six possible different visualization strategies,
because it reduces the shift among consecutive frames. Mo-
reover, the created videos were displayed with a frame rate

of 9 frames per second offering a smooth switching between
views.

At the end of the presentation of each pair of videos, a
dedicated user interface was displayed on the screen for about
five seconds during which the subject gives its judgment. The
participants were asked to rate the level of impairment of
the stimulus with respect to the non-compressed reference,
using a five-grade discrete impairment scale (1: very annoying,
2: annoying, 3: slightly annoying, 4: perceptible, but not
annoying, 5: imperceptible).

Given the large number of stimuli, a session would exceed
30 minutes, making it hard to show all of them in a single
session. Consequently, in order to avoid visual fatigue effects,
the subjective experiment was divided into two sessions whose
duration does not exceed 20 minutes each. Subjects took a
break between each two sessions. Moreover, each test session
involved only one subject assessing the stimuli. In order to
avoid possible contextual and memory effects, the display
order of these stimuli was randomized in a way that the same
content was never shown consecutively.

Before the experiment starts, instructions explaining the task
were provided to subjects. In addition, training session was
held with additional LF contents, allowing the subjects to
practice and become familiarized with the test procedure. The
quality of these training samples was chosen so that it covers
the full rating scale.

A total of 18 naive subjects (10 females and 8 males) took
part in the subjective experiments. The age of subjects was
ranging from 20 to 58, with an average of 29.4. All subjects
were screened for color blindness and visual acuity using
Ishihara and Snellen charts, respectively.

C. Data Processing

First, the subjective scores were screened to detect and
exclude possible outliers. Outliers detection was performed as
specified in [32], and no outlier subjects were found in this
study.

Second, the Mean Opinion Score (MOS) was computed
as the mean across scores provided by different subjects as
follows:

MOSj =
1

N

N∑
i=1

sij (1)

where N is the number of subjects and sij is the score given
by subject i for the stimulus j.

In order to evaluate the reliability of the obtained results
from statistical point of view, 95% confidence intervals (CI),
assuming a Students t-distribution of the scores, were compu-
ted together with MOS values.

IV. RESULTS AND DISCUSSION

R-D curves based on weighted PSNR (wPSNR) of the
four evaluated methods are provided in Figure 2. In these
plots, the horizontal axis reports the bitrate required to encode
the LF image and the vertical axis represents the average
wPSNR across all sub-aperture images calculated for YUV
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Fig. 2. R-D curves based on wPSNR of the four considered solutions for six different LF images.

Fig. 3. MOS vs bitrate with associated confidence intervals for six different LF images.

channels, where the factor 6 is assigned to the luminance
channel and the factor 1 for each chrominance channel [35].
One can observe that for all LF images and for all bitrates the
LA-32 method provides the best result and outperforms the
other compression solutions. The CNN-based view synthesis
approach (DL-16) performs well at low and medium bitra-
tes compared to HM-ALL and JEM-ALL methods, whereas
provides low performance for the high bitrates. As expected,

JEM-ALL outperforms HM-ALL for all tested LF images and
for all bitrates, because it includes different improvements
compared to HM, thus leading to an improvement of R-D
performances. However, these results are reported according
to wPSNR objective metric, which is not the best way for
assessing the visual quality of LF images.

Thus, in the Figure 3, the fitted R-D curves based on the
MOS are illustrated. The same conclusion may be drawn
from this figure regarding the LA-32 method. However, for
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DL-16 method, the results are quite different from objective
evaluation, since this method achieves clearly better visual
quality than HM-ALL and JEM-ALL methods, especially at
low and medium bitrates. Globally, the LF coding methods
based on view synthesis (LA-32 and DL-16) provide the
highest visual quality at all bitrates. For instance, for most
LF images their visual quality provided at medium bitrate is
roughly the same as the one achieved by the naive coding
approaches (HM-ALL and JEM-ALL) at high bitrate. Thus,
the coding methods based on view synthesis can achieve high
coding performance and demonstrate their effectiveness by
providing the best visual quality compared to the two other
methods.

V. CONCLUSION

In this paper, two recent LF compression methods based on
view synthesis have been compared subjectively and objecti-
vely to two pseudo-video sequence based coding approaches.
Experimental results show that the methods based on view
synthesis achieve significant better coding performance wit-
hout affecting the visual quality. Specifically, the subjective
quality assessment showed that the view synthesis based met-
hods provide substantial supperior visual quality, especially at
low and medium bitrates.

Future works will include more LF compression methods
based on view synthesis, as well as other more recent com-
pression methods for LF images.
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