
Decentralized Multi-Agent Deep Reinforcement
Learning in Swarms of Drones for Flood

Monitoring
1st David Baldazo

Information Processing and
Telecommunications Center

Universidad Politécnica de Madrid
Madrid, Spain

d.baldazo@alumnos.upm.es

2nd Juan Parras
Information Processing and
Telecommunications Center

Universidad Politécnica de Madrid
Madrid, Spain

j.parras@upm.es

3rd Santiago Zazo
Information Processing and
Telecommunications Center

Universidad Politécnica de Madrid
Madrid, Spain

santiago.zazo@upm.es

Abstract—Multi-Agent Deep Reinforcement Learning is be-
coming a promising approach to the problem of coordination
of swarms of drones in dynamic systems. In particular, the use
of autonomous aircraft for flood monitoring is now regarded
as an economically viable option and it can benefit from this
kind of automation: swarms of unmanned aerial vehicles could
autonomously generate nearly real-time inundation maps that
could improve relief work planning. In this work, we study the
use of Deep Q-Networks (DQN) as the optimization strategy for
the trajectory planning that is required for monitoring floods,
we train agents over simulated floods in procedurally generated
terrain and demonstrate good performance with two different
reward schemes.

Index Terms—navigation, reinforcement learning, swarms, de-
centralized control, floods

I. INTRODUCTION

Floods caused an estimated 367 US$ billion of economic
losses from 2007 to 2016 and led to more deaths than any
other type of natural disaster in 2017 [1].

Nearly real-time inundation maps are a valuable tool when
planning relief work. To provide them, both satellite and aerial,
radar and optical images have been employed. In particular,
the performance of aerial optical sensing has been proven by
works such as [2], which shows accurate detection of floods
from images captured by Unmanned Aerial Vehicles (UAVs).

Some approaches to navigation such as Simultaneous Lo-
calization and Mapping (SLAM) [3] require an explicit rep-
resentation of the map. This, however, imposes some con-
straints. An alternative approach can be found in model-free
Reinforcement Learning (RL) methods, which make use of
implicit representations but rely on hand-crafted features and
are limited to low dimensionality problems. The solution to
these limitations came in the form of Deep Reinforcement
Learning (DRL), which relies on deep neural networks to

This work was supported by a Ph.D. grant given to the second author by
Universidad Politécnica de Madrid, as well as by the Spanish Ministry of
Science and Innovation under the grant TEC2016-76038-C3-1-R (HERAK-
LES). We gratefully acknowledge the support of NVIDIA Corporation with
the donation of the Titan V GPU used for this research.

automatically extract features from raw input and provide the
implicit representation [4].

DRL has been previously used for automatic wildfire mon-
itoring from UAVs in [5] to reduce operational costs by
eliminating the need for remote control by a human pilot. With
the same objective in mind, in this article we follow a similar
approach to solve the problem of automatic flood monitoring.
The use of DRL allows for the development of an end-to-end
controller that maps raw input data to aircraft commands in
the form of bank angle corrections.

The development of a controller requires a flood simulation
model. Landlab [6] provides an implementation of a stable
and simple formulation of the shallow water equations for 2-
D flood modeling by Almeida et al. [7]. This tool also provides
us with a quick mechanism of generating the topography of
the terrain by means of erosion of a random initial terrain.

Regarding solution methods, inspired by [5], we use Deep
Q-Networks (DQN) and, on top of that, we explore the effect
of reward sharing, which is an alternative reward scheme in
swarm applications [8].

II. PROBLEM DESCRIPTION

A. Environment

The environment consists of a 2D map representing a 1 km
x 1 km area. It is discretized into 100 x 100 cells, each with
an elevation and a water level.

1) Terrain generation: The terrain is randomly generated
at the beginning of each episode of training. The elevation
map is created in a two step process: first, a 100 x 100
Brownian surface is generated. This initial map is then eroded
for 50 years using the FlowAccumulator and FastscapeEroder
(Braun-Willett Fastscape) modules in Landlab while the terrain
is uplifted. The resulting terrain typically has a maximum
relief of 10-30 m.

2) Flood simulation: We focus on those floods which are
the product of dam collapse. This allows for a controlled
environment in which the optimal solution is particularly
intuitive: the flooded area will move downhill from the dam

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

and the aircraft should fly through this valley. Episodes are
initialized by placing a 20 m x 20 m, 5 meter high body
of water in the center of the map before letting the flood
simulation run. During the episode, the terrain is fixed. The
Almeida et al. model (OverlandFlow Landlab component) is
run with Mannings roughness coefficient n = 0.01 s m-1/3, a
relatively low friction configuration, in order to simulate fast
evolving floods.

B. Agents
The agents are fixed-wing aircraft. Aircraft velocity v is

constant and equal to 20 m/s, each agent decides whether
to increase or decrease its bank angle φ by 5 degrees at a
frequency of 10 Hz and position is updated with the kinematic
model described in the following expressions:

ẋ = v cosψ, ẏ = v sinψ, ψ̇ =
g tanφ

v
, (1)

where g is standard gravity, 9.8 m s-2. The maximum bank
angle is set to 50 degrees and actions exceeding this limit have
no effect. This establishes a realistic limit to angular velocity.

III. SWARMDP IMPLEMENTATION
In contrast to [5], in which a Partially Observable Markov

Decision Process (POMDP) [9] is used as a model, we frame
the problem as a SwarMDP [10], which is a particularization
of the Decentralized POMDP (Dec-POMDP) model. In this
way, we explicitly model the multi-agent setting and the fact
that all agents are equal.

Definition 1. A swarMDP is defined in two steps. First, we
define a prototype A = 〈S,A,Z, π〉, where A is an instance
of each agent of the swarm and where:
• S is the set of local states.
• A is the set of local actions.
• Z is the set of local observations.
• π : Z → A is the local policy.

A swarMDP is a 7-tuple 〈N,A, P,R,O, γ〉 where:
• N is the index set of the agents, where i = 1, 2, ..., N

indexes each of the N agents.
• A is the agent prototype defined before.
• P : S × S × A → [0, 1] is the transition probability

function, where P (s′|s, a) denotes the probability of
transitioning to state s′ given that the agent is in state s
and plays action a. Note that P depends on a, the joint
action vector.

• R : S × A → R is the reward function, where R(s, a)
denotes the reward that the agent receives when it is in
state s and plays action a. Note that R depends on the
joint action vector a.

• O : S × Z ×A→ [0, 1] is the observation model, where
O(z′|s, a) is the probability of observing z′ given that
the agent is in state s and plays action a. Note that O
depends on the joint action and observation vectors a
and z respectively.

• γ ∈ [0, 1] is a discount factor, used to obtain the total
reward for the agent.

A. State

The local state of each agent has several dimensions:
• The surface water depth map Dt(x, y), with 100 x

100 dimensions, updated every 10 seconds by the flood
simulator.

• The position of the aircraft (xi, yi).
• The heading angle of the aircraft ψi.
• The bank angle of the aircraft φi.

B. Actions

The set of local actions is 〈 increase bank angle by 5
degrees, decrease bank angle by 5 degrees 〉. Each agent has
to choose one of them every 0.1 s.

C. Observations

Each agent collects two kinds of observations: a vector of
features representing some information of the local state of the
own aircraft and the other aircraft, and an image representing
a partial observation of the flood from the perspective of the
aircraft.

The vector of features of each agent i is itself the concate-
nation of four vectors of continuous variables: all the bank
angles {φj | j ∈ 1, 2, ..., N} = φ, the range to other aircraft
{ρij | j ∈ 1, 2, ..., N ∧ j 6= i} = ρi, the relative heading
angle to other aircraft {θij | j ∈ 1, 2, ..., N ∧ j 6= i} = θi
and the relative heading angles of other aircraft {ψij | j ∈
1, 2, ..., N ∧ j 6= i} = ψi.

The images are assumed to be the processed output of an
optical hemispherical camera with a view angle of 160 degrees
always pointing downwards, resulting in a maximum range of
500 m. The final image is a 30 x 40 pixel representation of
the flood.

To generate the image, the surface water depth map Dt(x, y)
is compared with a fixed water level threshold, here set to 5
cm, to simulate the inability of the image processing algorithm
to detect very shallow waters. The resulting boolean map of
detectable flooded areas Ft(x, y) is then used to compute
the observation of the aircraft by sampling at 40 azimut
angles uniformly and each of these angles at 30 elevation
angles uniformly from nadir to 10 degrees below the horizon.
This results in a non-uniform sampling in range with more
resolution right below the aircraft than at 500 m.

D. Rewards

The reward corresponding to each agent i consists of the
sum of four distinct components:

r1 =− λ1 min
{s∈S|Ft(s)}

ds, (2)

r2 =− λ2
∑

{s∈S|ds<r0}

1− Ft(s), (3)

r3 =− λ3φ20, (4)

r4 =−
∑

{j∈1,2,...,N∧ j 6=i}

λ4 exp
(
−ρij
c

)
, (5)

where ds is the distance from the aircraft to cell s. These are
penalties for:

2019 27th European Signal Processing Conference (EUSIPCO)

(a) Terrain. (b) Flood at t = 0 s. (c) Flood at t = 100 s. (d) Flood at t = 500 s.

Fig. 1. An example of random terrain generation and flood evolution over time.

(a) True flood. (b) Visible flood.

(c) Observation by agent.

Fig. 2. An example of the generation of observation images.

• Distance from flood (r1): proportional to the distance to
the closest flooded cell.

• Dry cells nearby (r2): proportional to the number of dry
cells in a radius r0.

• High bank angles (r3): proportional to the square of the
bank angle.

• Closeness to other aircraft (r4): sum of the contributions
of each one of the other aircraft, which saturate to λ4.

The tuning parameters have been set to the following values:

λ1 = 10, λ2 = 1, λ3 = 100, λ4 = 1000, (6)
r0 = 10, c = 100. (7)

The reasoning behind the selection is that flying far away
from the flood should be heavily penalized and, once over the
flood, the penalizations from bank angle and closeness to other
aircraft should become important.

IV. SOLUTION METHOD

A. Deep Q-Networks

The objective of the solution method is to find the policy π
which maps observations to actions optimally. The optimality
criterion is determined by the reward function R that we have
defined. From it, a value Q(s, a) can be deduced for each
state-action pair. This value function represents the expected
accumulated reward by an agent that takes action a in state s.
The Q function for the optimal policy takes the values given
by the Bellman equation:

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)max
a′∈A

Q(s′, a′). (8)

For a given Q function, the optimal policy is the following:

π(s) = argmax
a∈A

Q(s, a). (9)

DQN [4], [11] estimates Q by training a deep neural
network to approximate the function. Training is performed
with the following loss function:

Li(θi) = E(s,a,r,s′)

[
e2
]
, (10)

where the Bellman error e is:

e = r(s, a) + γmax
a′

Q(s′, a′; θ−)−Q(s, a, θ). (11)

During training, the agent faces a trade-off between explo-
ration of the action-state space through a random policy and
exploitation of the knowledge that has already been acquired
through the current estimation of the optimal policy. In practice
this is tackled by using an exploratory policy for most of the
decisions at the beginning of training and gradually increasing
the fraction of exploitation actions.

DQN also tackles the problem of instability inherent to
DRL, firstly by randomizing the samples used in training
through a mechanism known as experience replay, in order

2019 27th European Signal Processing Conference (EUSIPCO)

to reduce the effect of the correlation of the sequence. This
is implemented through a replay memory E. Secondly, by
training at the same time but at a lower update rate than the
first network (with parameters θ) a different network, known
as target network (with parameters θ−), to estimate Q(s′, a′),
so that the first network is moving towards a fixed target. The
complete algorithm is detailed in Algorithm 1.

Algorithm 1 Deep Q-Networks (DQN)
Input: Parameters: ε, L, N
Output: π, the approximate optimal policy.

1: Initialize replay memory E to capacity L
2: Initialize θ = θ− randomly
3: for each episode do
4: Initialize s0
5: for each step t in the episode do
6: Take action at ∼ πε(·|s) and observe rt, st+1

7: Update memory replay E with current sample et =
(st, at, st+1, rt)

8: Sample randomly a set N of N indexes from E
9: for each experience sampled et do

10: Obtain Bt
11: Update: θ ← Adam((Bt −Q (st, at; θ))

2)
12: Update: θ− ← θ

13: for all s ∈ S do
14: π(s)← argmaxa′∈A Predict ((s, a′) , θ−)

15: return π, θ

where Bt = rt + γmaxa′ Q (st+1, at+1; θ
−) for non-

terminal st+1 and Bt = rt for terminal st+1.

B. Network architecture

The neural network treats the two types of observations
separately. The features go through a series of dense layers
with ReLU as the activation function. The image is instead
processed by a series of convolutional layers and max pooling
layers which reduce the dimensionality of the image in an
efficient way before entering its own dense layers. The outputs
of both networks are then concatenated and go through two
additional dense layers. The complete architecture is shown in
Fig. 3.

C. Reward configuration

We compare two reward schemes, which differ in the
level of decentralization during training. Once trained, both
approaches allow for decentralized control.

1) Independent rewards: Each agent receives its own re-
ward as previously defined.

2) Shared reward: All agents share the same reward, con-
sisting of the mean of the independent rewards.

V. SIMULATION SETUP
We test both independent and shared reward configurations

with two agents. Training is performed every 100 steps, once
100 new samples have been collected. Each of the training
steps uses a batch size of 2000 samples, randomly taken from

Image input 30x40

Conv. Layer: 64 3x3

ReLU

Max Pool Layer: 2x2

Conv. Layer: 64 3x3

ReLU

Max Pool Layer: 2x2

Conv. Layer: 64 3x3

ReLU

Max Pool Layer: 2x2

Dense Layer: 500 units

ReLU

Dense Layer: 100 units

ReLU

Dense Layer: 200 units

Features input: φ, ρi, θi, ψi

ReLU

Dense Layer: 100 units

ReLU

Dense Layer: 100 units

ReLU

Dense Layer: 100 units

ReLU

Dense Layer: 100 units

ReLU

Dense Layer: 100 units

ReLU

Dense Layer: 200 units

ReLU

Output Layer: 2 units

Q(s, a1) Q(s, a2)

Fig. 3. Network architecture.

a buffer of the last 100000 samples. The target network is
updated every 1000 steps, that is, once for every 10 action-
values update. Learning only starts after the first 2000 steps,
so that the network does not overfit to the first samples. The
fraction of exploratory actions starts at 1, decreases linearly
during the first 70% of training time and stays at 0.1 until
the end of training. The simulated episodes have a duration of
10000 steps (17 minutes). We use Adam [12] as the method
for stochastic optimization and we set the learning rate to a
value of 5 · 10−4.

VI. SIMULATION RESULTS

The main performance metric is the episode accumulated
reward, which is the sum over an episode of the instantaneous
rewards of all agents. As depicted in Fig. 4, both reward
configurations allow the agents to learn and reduce their
penalties on average.

2019 27th European Signal Processing Conference (EUSIPCO)

Fig. 5 shows a simulated episode as an example of the
behaviour that is learnt by the agents. Aircraft learn to head
towards flooded areas once they are detected and stay close to
them, but are forced to avoid staying in the same area making
small circles because high bank angles are penalized. Instead,
the agents go through the flood while keeping a distance from
other aircraft. When the area of interest is too small, the
penalty to the proximity between aircraft outweighs the rest
and one of the aircraft stays where it is making small circles.

Regarding the reward scheme, we expected a similar be-
haviour in both configurations for this particular multi-agent
problem because three of the four penalty components (r1, r2
and r3) are independent of the behaviour of the other aircraft,
meaning that the margin of improvement is only related to the
optimization of the relative positions of aircraft with respect
to each other.

Fig. 4. Comparison of reward during training.

VII. CONCLUSIONS

In this paper we present a technique for training through
DRL a deep neural network capable of guiding multiple fixed-
wing aircraft to monitor floods in a decentralized fashion.
Agents are able to take decisions from raw input data, consist-
ing of a processed optical image and some information of the
local state of the swarm. We tested two reward approaches,
which differ in the degree of decentralization in training.
Simulation results show that the aircraft are able to efficiently
monitor floods in a coordinated fashion with both reward
schemes. These controllers could be installed in real UAVs
in order to reduce operational costs. We trained on simulated
floods from dam collapses but the training approach should
perform well on all kinds of floods as long as the training
data is general enough.

REFERENCES

[1] CRED, “Natural disasters 2017. Brussels: CRED,” 2018 EM-DAT file
dated 02/07/2018.

(a) t = 50 s (b) t = 100 s

(c) t = 150 s (d) t = 200 s

Fig. 5. An example of an episode with two aircraft.

[2] Q. Feng, J. Liu, and J. Gong, “Urban flood mapping based on unmanned
aerial vehicle remote sensing and random forest classifierA case of
Yuyao, China,” Water, vol. 7, no. 4, pp. 1437–1455, 2015.

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[5] K. D. Julian and M. J. Kochenderfer, “Distributed wildfire surveillance
with autonomous aircraft using deep reinforcement learning,” Journal
of Guidance, Control, and Dynamics, pp. 1–11, 2019.

[6] D. E. J. Hobley, J. M. Adams, S. S. Nudurupati, E. W. H. Hutton, N. M.
Gasparini, E. Istanbulluoglu, and G. E. Tucker, “Creative computing with
Landlab: an open-source toolkit for building, coupling, and exploring
two-dimensional numerical models of earth-surface dynamics,” Earth
Surface Dynamics, vol. 5, no. 5, pp. 21–46, 2017.

[7] G. A. Almeida, P. Bates, J. E. Freer, and M. Souvignet, “Improving the
stability of a simple formulation of the shallow water equations for 2-D
flood modeling,” Water Resources Research, vol. 48, no. 5, 2012.

[8] M. Hüttenrauch, A. Šošić, and G. Neumann, “Deep reinforcement
learning for swarm systems,” Journal of Machine Learning
Research, vol. 20, no. 54, pp. 1–31, 2019. [Online]. Available:
http://jmlr.org/papers/v20/18-476.html

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[10] A. Šošić, W. R. KhudaBukhsh, A. M. Zoubir, and H. Koeppl, “Inverse
reinforcement learning in swarm systems,” in Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2017, pp. 1413–1421.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

2019 27th European Signal Processing Conference (EUSIPCO)

