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Abstract—This paper develops a new algorithm for estimating
the parameters of multiple chirp signals in noise. The proposed
method uses Compressive Sensing (CS) formulation of the Dis-
crete Chirp Fourier Transform (DCFT) basis to achieve superior
estimator performance. Unlike Fourier or time-frequency based
approaches, DCFT incorporates the underlying chirp signal
model parameters in formulating the transform [1]–[4]. In this
work a CS formulation exploits the parametric DCFT basis for
fast recovery to achieve highly accurate parameter estimation
results in polynomial time using Orthogonal Matching Pursuit
(OMP). The performance of the proposed algorithm has been
compared with existing methods via simulations.

Index Terms—Chirp Parameter Estimation, Compressive Sens-
ing, Discrete Chirp Fourier Transform (DCFT)

I. INTRODUCTION

Wide-band chirp, or Linear Frequency Modulated (LFM)
signals have a broad range of applications, especially in
radar [5], sonar [6], and medical imaging [7]. Parameter
estimation of Chirp signals has been studied extensively in
literature [6], [8]–[12]. In one of the earliest reported work,
[8] used phase un-wrapping followed by linear regression to
estimate the parameters of a single chirp signal. In [9] rank
reduction and total least-squares fit were used for maximum
likelihood estimates. [10] uses Signal Reconstructing Least-
Square (SRLS) for the estimation of initial frequency and chirp
rate by first unwrapping the signal phase using subsequent time
samples and a modified least square to update the estimate.
Time-frequency analysis have been used in [6], [12]. The
work in [11] uses a de-chirp method based on the initial
guess of estimated parameters, followed by a multistage joint
least squares approach. [6] uses Short Time Fourier Transform
(STFT) and Zoom-Fractional Fourier Transform (FRFT) in a
multi-stage process.

The concept of exploiting chirp basis was introduced in [1]–
[4]. by developing DCFT and modified DCFT. Xia proposed
DCFT [1], [13] as a tool similar to Discrete Fourier Transform
(DFT) but specifically for chirp signals. They showed that if
the number of observation samples (N ) is a prime number,
then the DCFT side-lobes magnitude is 1 and the mainlobe
magnitude is

√
N [see (4)]. Later, a modified DCFT (mDCFT)

was proposed in [14] to circumvent the requirement of prime
number signal samples. Also, letters exchanged between the
authors of [13] and [15] suggested a modification to DCFT
to increase the chirp rate resolution that avoids the prime
number of samples issue by increasing the sample rate of the
quadratic term. Given its general applicability, in this work the

mDCFT basis space [13]–[15]will be used in a CS framework
to enable chirp parameters estimation with a limited number
of observation samples.

Chirp parameter estimation using CS has also appeared in
the literature [16]–[20]. Applebaum et al [16] used a recursive
least square of de-chirp and DFT to find minimum energy
change and estimate the initial frequency and chirp rate. Guo
[17] uses Gabor dictionary as sparse representation and then
Hough Transform (HT) to estimate the parameters without
computing the time-frequency distribution. Kang et al [18]
used a transformation matrix similar to DCFT but with down
chirp embedded in it. Their algorithm performed well at low
SNR. Sward [19] introduced an iterative sparse reconstruction
method to estimate the parameters of linear or harmonically
related chirp signals. The algorithm uses re-weighted group-
sparsity approach, followed by an iterative relaxation-based
refining step. The work in [20] exploits sparsity in the Poly-
nomial Fourier Transform (PFT) domain, where the discrete
chirp transform is presented as a special linear case. It uses a
sequential process of de-chirping of the signal and then applies
CS with DFT basis and thresholding to select spectral peaks.
The chirp parameter estimation and reconstruction process
appears to rely on visual inspection by user to identify spectral
concentration in Fourier/PFT domain plots, i.e., the process is
not automated.

The CS based DCFT has appeared in [2], [21]. [21] uses
recursive DCFT to find the nonzero locations of chirp signal
parameters followed by an updated least squares solutions.
Their algorithm was applied to MRI images, which exhib-
ited good sparsity properties using chirp bases. In [2], [4]
Alkishriwo et al discuss the sparsity of a different version
of modified DCFT approach named as DLCT and applied it
primarily in the context of data compression of real chirp-
like signals produced by bats and birds. Extension to CS
was pointed out as future work. Their work did not discuss
the complete CS process including the transformation matrix
construction and the recovery process. Finally, in [21] the
original DCFT and not MDCFT was used but no optimization
was clearly discussed with regards to the range of the DCFT
transformation or its resolution. Also, their work dealt with
reconstruction of images that may contain multiple DCFT
peaks and not formulated as typical parameter estimation
problem.
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II. PROBLEM FORMULATION AND BACKGROUND

A. Discrete Chirp Fourier Transform (DCFT)
A discrete linear chirp signal is defined as,

s (n) = aej
2π
N (β0n

2+f0n), n = 0, . . . , N − 1 (1)

where, β0 and f0 are the unknown chirp rate and start
frequency, respectively, that are to be estimated.

The forward and inverse DCFT are defined as, [1], [2],

S (f, β) =
1√
N

N−1∑
n=0

s (n) e−j
2π
N (fn+βn2) (2)

s (n) =
1√
N

fU∑
f=f1

βV∑
f=β1

S (f, β) ej
2π
N (βn2)ej

2π
N fn (3)

where, f ∈ [f1, . . . , fU ] and β ∈ [β1, . . . , βV ]. Unlike DFT,
DCFT has two variables β and f . For a single chirp, the DCFT
magnitude should have peaks at the true β0 and f0, but side-
lobes will also be present. It has been shown [1] that when
N is a prime number, the main-lobe and side-lobe values of
S (f, β) are given by,

|S (f, β)| =

 |a|
√
N when f = f0 and β = β0

|a| when β 6= β0
0 when f 6= f0 and β = β0

(4)

Equation (4) shows that DCFT coefficients will be sparse as
peaks are formed at true S (f0, β0) of amplitude |a|

√
N and

maximum side-lobes of values |a| when N is prime [1]. For
non-prime N , sidelobes can be more significant.

Next, consider multiple chirp signals modeled as,

sL (n) =
i=L∑
i=1

aie
j 2π
N (βin2+fin) (5)

where, L is the number of chirp signals and ai is the amplitude
of the i-th chirp signal. Since DCFT is linear [1], DCFT of
multiple chirps is the sum of individual DCFTs,

St (f, β) =
L∑
i=1

Si (f, β) . (6)

where Si (f, β), defined in (2), is the DCFT coefficients of
i− th chirp signal. At i− th chirp signal location (fi, βi), the
main-lobe components of Sj (fj , βj) are expressed as,

St (fj , βj) = Sj (fj , βj) +
L∑

i=1,i6=j

Si (fj , βj) . (7)

Using results from equation (4) it can be shown that,

|St (fj , βj) | ≤ |aj |
√
N +

L∑
i=1,i6=j

|ai| (8)

The bounds of the maximum side-lobes for f 6= fi and β 6= βi
can be shown to be,

|St (f, β) | ≤
L∑
i=1

|ai|. (9)

It can be concluded that DCFT for multi-chirp signals is
less sparse, as main-lobe is affected by

∑L
i=1,i6=j Si (fj , βj)

representing side-lobes due to other chirp signals at (fj , βj).
At the same time, side-lobes tend to be higher because it’s the
sum of contributions from all side-lobe components.

B. Modified Discrete Chirp Fourier Transform (MDCFT):

It is important to note that the original DCFT in (2) is
not restricted to prime N but it performs optimally when
N is prime [13]. Exchange of letters between the authors
of [15] and [13] suggested useful modifications to (2) where
it was shown that increasing the chirp rate resolution by
increasing the sampling rate to n/N [15], DCFT can be
generally effective for non-prime N . With this modification,
the discretization of the chirp signal in equation (1) becomes,

s (n) = aej
2π
N ( β0N n2+f0n). (10)

The Modified DCFT is given by [15],

S (f, β) =
1√
N

N−1∑
n=0

s (n) e−j2π(f(
n
N )+β( nN )2) (11)

, ψH(f, β)s, where, (12)

ψ(f, β),[ej
2π
N [f(0)+ β

N (0)2] · · · ej
2π
N [(N−1)f+ β

N (N−1)2]]T (13)

represents MDCFT basis vector at (f, β) and s , [s(0) s(1)
· · · s(N − 1)]T . Several other modifications of DCFT have
also been presented in [13], [14]. In the rest of this paper, the
general MDCFT version defined in equation (12) will be used
and will be referred to interchangeably as DCFT.

For both DCFT and MDCFT, increase in side-lobe levels
limits the usefulness of DCFT for multi-chirp signals, espe-
cially at low SNR [15]. In this work, this limitation will be
overcome by the use of Compressive Sensing (discussed next),
as CS will perform as time-variant filter to reduce the side-
lobes and increase the detection resolution of the chirp rate
parameters of DCFT transformation. CS can also reduce the
number of measurements required for implementing DCFT
transformation.

C. Compressed Sensing (CS)

CS is a signal acquisition and recovery framework that
supports signal estimation from compressive measurements,
i.e., fewer measurements than unknowns. The underlying
assumption making CS possible is that the signal is sparse
in a known basis. Performance largely depends on the signal
basis structure because higher sparsity signal results in more
efficient and reduced cost of measurement, collection and
processing [22], [23]. The basic CS process can be expressed
in matrix notation as [22], [23],

y = Φx = ΦΨα, (14)

where y is an (Ms × 1) measurement vector, Φ is a random
projection measurement matrix of size Ms×N where, Ms <<
N , and x is an N × 1 signal to be recovered. The signal x is
modeled as a linear combination of columns from a potentially
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overcomplete dictionary (FFT, wavelet, DCFT, etc.) matrix Ψ,
x = Ψα. The coefficient vector α is assumed to be sparse
(i.e., the number, K, of non-zero elements is small), such that
only a few columns of Ψ contribute to x. Letting A = ΦΨ,
and || · ||1 denote the `1 norm, the convex optimization

α̂ = argmin ‖α‖1 s.t. Aα = y, (15)

may be used to recover α. When A satisfies the restricted
isometry property (RIP), the reconstruction is guaranteed to
succeed with high probability [24]. From estimates of the
sparse coefficients α̂, the signal estimate is computed as
x̂ = Ψα̂.

In the current work, we choose Φ = I , and let the
dictionary, Ψ, be formed from the mDCFT vectors (13), as
explained in detail next.

D. CS-DCFT Formulation

For CS-DCFT implementation, noisy observations are de-
noted by, y = [y(0) . . . y(N−1)]T , with y(n) = s(n)+w(n),
where, w(n) is AWGN and s(n) is a number of chirps.
In this case, the desired sparsity is in the DCFT domain,
α ≡ X(f, β) ∈ CUV×1, which is formed by applying the
transformation in (12) on noisy signal y repeatedly with
probing pairs of (fi, βj) for i = 1, . . . , U and j = 1, . . . , V ,
and stacking the transformed vectors,

X(f, β) = ΨHy and (16)

Ψ = [ψ(f1, β1) . . .ψ(f1, βV ) | . . . (17)
| ψ(fU , β1) . . . ψ(fU , βV )] ∈ CN×UV (18)

Using these notations, the optimization in (15) has the form,

X̂(f, β) = argmin ‖X(f, β)‖1 s.t. ΦΨX(f, β) = y. (19)

In this paper, Orthogonal Matching Pursuit (OMP) [25] will
be used as the convex recovery algorithm. Several other recov-
ery algorithms can also be used, but OMP demonstrated re-
spectable performance with lower computation time than other
convex recovery algorithms. OMP can reliably recover a signal
with K nonzero entries in dimension Ns given O(k lnNs)
random linear measurements of that signal [25]. This is a
significant improvement over other algorithms, which require
O(k2) measurements. One disadvantage of OMP is that it
is less stable than traditional Basis Pursuit (BP) algorithms
like `1 [22] that were also attempted with good results in our
work with minor changes to accommodate complex numbers.
`1 minimization is a little computation intensive compared to
other techniques but it is more stable [26]. `1 minimization
can recover perfectly using Ms random measurements if K
satisfies K < cMs

log(N/Ms)
, where, K can be considered as the

number of sparse peaks and c is a known constant.

III. SIMULATION RESULTS

Sum of three wide-band chirp signals were simu-
lated with the starting frequencies, f01 = 6.0, f02 =
10.0, f03 = 15.0MHz and chirp rates β01 = 4MHz, β02 =

10MHz, β03 = 3MHz/µsec, respectively. 200 samples at
a sampling rate Fs = 50 MHz were generated with SNR=-
7dB. The plot on the left of Figure 1 shows 3-D view of the
magnitude of the original DCFT spectrum |X(f, β)| at various
f and β values by processing all of the 200 samples. For this
highly noisy case, it can be observed that the performance of
regular DCFT was quite poor when compared with the CS-
DCFT implementation proposed in this work, as shown at the
right. No compression was used for these experiments.
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Fig. 1. Performance with SNR = -7dB. Left: Original DCFT Spectrum; Right:
Recovered X̂ (f, β) using CS-DCFT.

Sequential Processing: The estimation process for multiple
chirps as described above can be considered as batch process-
ing, where all the chirp parameters are estimated in one step.
However, if fine search grid is used then the processing of 2-D
search can be intensive. Instead, the estimation process can be
made sequential, where coarse search can be used in the first
step to determine approximate peaks and then fine search grid
can be used around the strongest peak for lower computational
expense. The estimated chirp signal is subtracted from the
original signal, and the process can be repeated until no
further significant peaks are found. This approach is similar
to the Cyclic Algorithm proposed for frequency estimation
[27], except in the present case using CS, there is no need for
repeat pass as the first pass using CS itself produces excellent
estimates.

Analysis of Compression Ratio with increasing Number
of Chirps: As in case of regular DCFT [see equation (9)]
increasing the number of chirp signals intensifies the side-
lobes affecting the performance of the CS algorithm if high
compression ratio is used. Figure 2 shows RMSEs from
recovery of one, three and four chirp signals. Therefore,
multiple chirp estimation requires more measurements than
single chirp to produce similar RMSE, which is reasonable as
stated before because signal sparsity is reduced from N − 1
to N − L, where L is the number of chirp signals.

Performance Comparison with an existing CS-based
Method: Next, we compare the CS-DCFT method against the
Applebaum algorithm [12] for chirp parameter estimation. A
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Fig. 2. RMSE with different CS ratio for a single and multiple chirp signal.
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Fig. 3. CS-DCFT parameter estimation compared to the Applebaum algo-
rithm.
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Fig. 4. CS-DCFT parameter estimation compared to the Applebaum algorithm
when two signals out of three share the same chirp rate.

signal with three chirp sources was generated with N = 127,
and the RMSE vs. SNR is shown in Figure 3. Each point
in the figure is the result of averaging 20 Monte Carlo runs
for the given SNR. The CS-DCFT method outperforms the
Applebaum algorithm overall at all SNRs considered, however
the performance difference is greatest for low SNR. The
Applebaum algorithm is also limited in that the signal length
N must be prime and performance degrades when two or more
signals have the same chirp rates, as demonstrated in Figure 4.

IV. CONCLUDING REMARKS

This work introduces parameter estimation of multiple
wideband chirp signals by incorporating a modified DCFT
basis in Compressive Sensing formulation (CS-DCFT). The
chirp basis requires two-dimensional search over chirp rate and
chirp frequency. Simulation results show superior performance
as compared to original DCFT and an existing CS-based
method.
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