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Abstract—Visually plausible image forgeries are easy to create
even without particular knowledge or skills. However, most
forgeries unknowingly alter the underlying statistics of an image.
In particular, demosaicing artefacts created by the camera are
usually destroyed or modified when the image is tampered.
Most of the literature focus on detecting where these traces are
destroyed, and generally do it in a way that still requires a visual
interpretation. We introduce an a contrario method which detects
global demosaicing parameters, and then checks for regions
of the image which are inconsistent with these parameters.
Detections are guaranteed in the form of a number of false alarms
(NFA), which enables the user to control the false positive rate.
Such a guarantee is a useful complement to existing methods,
and enables inclusion into fully automatic image authentication
processes. The source code and an online demo are provided with
the article.

Index Terms—image forgery, forgery detection, forgery, CFA
interpolation, CFA, color filter array, demosaicing, demosaick-
ing, filter estimation, linear estimation, a contrario, tampering,
artefact detection, Bayer matrix

I. INTRODUCTION

Images are frequently presented as proofs of events or facts.
However, it is nowadays easy, even for novices, to alter an
image and its meaning while keeping it visually plausible.
This has given rise to a plethora of forged images, used in
social media for fake news and misinformation, or in academic
papers where images are sometimes used as proofs of results
in experiments. It is therefore of utmost importance to design
reliable methods detecting forgeries in images [1].

Although image forgeries are varied in nature, different
kinds of clues can be used to detect them. In this paper, we
focus on detecting demosaicing artefacts left by the camera,
and their use in finding and localising forgeries. Most cameras
can only sample one colour at each pixel, and have to
interpolate the missing information with neighbouring pixels.
The most common sampling pattern is the Bayer matrix (see
Fig. 1), which samples two green pixels for one red and one
blue pixel.

Missing colour values must be interpolated on each pixel
from its neighbourhood. This process is known as demosaic-
ing, or Colour Filter Array (CFA) interpolation [2]. It leaves
artefacts that can be detected to get information about the
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Fig. 1: Top left portion of a CFA image obtained with a Bayer
matrix R G

G B . At each pixel, a single color (either red, green,
or blue) is sampled.

demosaicing process in the image, which can in turn reveal
forgeries by finding regions inconsistent with the global image.

The simplest interpolation method is known as bilinear
demosaicing, where each missing colour is interpolated as the
mean of adjacent pixels sampled at the same colour. Although
the traces left by this method are simple to detect, most com-
monly used demosaicing algorithms are more sophisticated
and thus harder to detect [2].

Popescu and Farid [3] proposed to estimate the demo-
saicing method through a linear filter with an expectation-
maximisation algorithm, which alternately computes a prob-
ability map of each pixel being interpolated and finds the
linear filter best explaining the interpolated pixels. They use
the Fourier transform of the probability map to check for
periodicities of period 2, which reveal the existence of CFA
interpolation. Bayram et al. expand on this method in [4] to
identify the camera model. By separating the smooth and non-
smooth regions of the image in the EM algorithm, they enable
a better separation of the demosaicing algorithms.

Chen and Stamm [5] tackle the problem of camera model
identification in another way. They note that building para-
metric models for demosaicing can be hard as the algorithms
used are often complex and proprietary. They decide instead
to use an ensemble of submodels, each carrying parts of
the demosaicing artefacts, and merge them with standard
classifying algorithms to identify the camera.

Most methods of forgery detection that make use of CFA
artefacts to find forgeries do it by looking for places where
CFA interpolation artefacts have been destroyed through tam-
pering. However, getting reliable detections through this is
made difficult by the fact that CFA interpolation traces can
be naturally absent in parts of an image for structural reasons.
Instead, we focus on a similar, but different problem. When a
copy-move forgery is made, if the copied part has undergone
a demosaicing too, the copied object should present CFA
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artefacts. When pasted onto the image, there is a 3
4 probability

that the position of the Bayer Matrix will be different in the
forged region and in the global image. With this in mind, we
are interested first in detecting the global CFA pattern of an
image, and subsequently the local CFA patterns.

To do that, Kirchner [6] uses the fact that bilinear interpola-
tion is a good estimation of demosaicing algorithms in a large
part of the image. For each possible CFA pattern of the image,
they apply a pseudo-inverse of this demosaicing algorithm to
the corresponding subgrid and generate an error map. The
most likely pattern is then identified as the one with the lowest
error. Choi et al. [7] noticed that interpolated pixels are usually
an average of part of their neighbours; as a consequence they
tend to have more often intermediate values than originally
sampled pixels. They use this strategy to identify the correct
Bayer matrix position, and to detect colour modifications in
images by detecting when the green channel is transposed to
the red and blue channels [8].

State-of-the-art methods already provide decent results for
CFA pattern classification, even for small windows, provided
the JPEG compression is not too drastic. However, the results
of such a classification are not sufficient when it comes to
detecting forged images. Indeed, an incorrect CFA diagnose
on a single image block is enough to consider an image as
falsified. Thus, a method with a 95% accuracy on 128× 128
blocks would risk detecting a falsification nine times out of
ten in a standard, authentic image of size 1024×768. In other
words, controlling the false alarms rate over the many blocks
of an image is necessary to detect forgeries. In a preliminary
work [9], we expanded the method of [6] to use information
about the demosaicing algorithm. By estimating linear filters
for demosaicing in all four possible grid positions, we could
generate error maps that were closer to the used method. This
provided a simple way of controlling the number of false
positives as we could then be certain that the found pattern
was correct and that the image had effectively gone through
demosaicing. On top of that, we added a statistical verification
of our results by making blocks in the image vote on the most
likely position. However, natural variations in the estimation
of filters could induce cases where one of the Bayer patterns
would seem better than others even in the absence of any
demosaicing. Furthermore, block voting implied a sensitivity
loss making it harder to find forgeries with small area.

In this article, we propose a new method to reliably detect
the correct position of the Bayer matrix. We start by applying
a high-pass filter tailored to highlight the difference between
original and interpolated pixels. We then use a statistical test to
compare the samples of the possible grid positions, in order
to know which positions are significantly impossible in the
image. Comparing the results in the global image and across
smaller windows enables us to detect and localise forged
regions in images.

An online demo for this method is available at
https://bit.ly/2UklsAR, and the source code can be
downloaded at https://bit.ly/2GYSLGv.

II. METHOD

A. The a contrario paradigm for reliable detections

One of the key goals of our method is not only to find which
of the four possible patterns R G

G B ,
G R
B G ,

G B
R G and B G

G R have
been used, but to know how confident we are in our detection
so as to control the number of false alarms.

Let xp, p ∈ {R G
G B ,

G R
B G ,

G B
R G ,

B G
G R } be four samples, each

containing n non-negative values. We consider that each CFA
position p is represented by sample xp – we will detail later
how these samples are constructed. We assume that in the
absence of demosaicing, ie. if there is no reason to favour one
CFA pattern, then the values of all xp are similar, but that if
the image has been demosaiced and the used CFA pattern is
p?, then the value of xp? are higher than those of the other
xp.

Assuming that an image has been demosaiced, the position
of the Bayer matrix can be obtained by taking the mean of all
xp and selecting the highest one. However, it may be that
the image has not been demosaiced, or that the traces of
demosaicing can no longer be found, for example because of
post-processing effects or because the image is too small. How
then can we be certain that the values our algorithm returns
are correct?

In order to get a reliable detection, we make use of the a
contrario paradigm [10], [11]. The approach is based on the
non-accidentalness principle, according to which an observed
geometric structure is perceptually meaningful only when its
expectation is low under random background model. Detection
thresholds can then control the expected number of false
detections in this background, or a contrario model H0. An
observed structure is validated only when a test rejects the H0

hypothesis. The detection threshold must take into account
our multiple testing, as in Gordon et al. [12]. Assume that
NT tests are performed and that a variable u is observed at
each one. We desire to set a threshold τ such that the sought
structure is validated when u ≥ τ . Following the a contrario
methodology, we define the Number of False Alarms (NFA)
of a candidate by

NFA = NTPH0
(U ≥ u), (1)

where PH0
(U ≥ u) is the p-value of observing under random

hypothesis H0 a value U as large or equal to u. The candidate
is validated whenever NFA < ε, where ε is a predefined
accepted mean number of false detections. This yields an
implicit value for the threshold τ . Accepting all detections
with a NFA score of ε = 10−3, we should expect an average
of one false positive for 1,000 images.

For CFA detection, we compare two samples x1 and x2,
each having n non-negative values. We determine whether the
first sample has significantly larger values than the second. For
this, we compute the Mann-Whitney U statistic [13],

u =
n∑

i=1

n∑
j=1

1{xi
1>xj

2}
(2)
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where 1 is the indicator function and xkp is the k-th value of
sample p. The value of u belongs to [0, n2]. This value is zero
when all samples of x1 are smaller than the samples of x2.
Conversely, u = n2 when all samples of x1 are larger than the
ones of x2. We can now define a natural background model for
our statistical test. Its null hypothesis H0 is that all samples
in both X1 and X2 were independently drawn from the same
distribution, which must be correct if no demosaicing has been
performed. Thus, PH0(X

i
1 > Xj

2) = PH0(X
i
1 < Xj

2) = 1
2

for any i, j. This defines the Mann-Whitney U test [13] with
the corresponding random variable U . For large samples, U
is approximately normally distributed, which allows a simple
computation of the p-value PH0

(U ≥ u).
To sum up, given two samples x1 and x2, the associated

U statistic is computed with eq. 2. Then, the NFA value is
given by eq. 1 and by the p-value of the Mann-Whitney test.
Finally, the sample x1 is declared significantly larger than x2
if NFA < ε.

B. Detecting the possible CFA patterns

The first thing to do is to find which pixels are sampled
and which have been interpolated. An easy way to do this
is to apply a differential operator like the discrete Laplacian,
which highlights extremal values and thus pixels likely to have
been interpolated. Following the example of [6] or [3] or our
preliminary work in [9], it is also possible to apply in each
of the four possible grid positions a demosaicing algorithm –
either fixed as in [6] or estimated as in [3] – and to compare
the residuals.

One could simply compute a heat map with a differential
operator – which can be implemented as a linear convolution
followed by a point-wise absolute value operator. Yet this
would not take into account that, depending on their positions
on the Bayer matrix, the pixel subset from which interpolation
is performed may vary. On the other hand, using a demosaicing
algorithm in four positions must be done with caution. Pre-
liminary experiments suggest that using a fixed demosaicing
algorithm, such as the bilinear algorithm, does not yield good
results when it is too different from the algorithm that was used
to process the image, and an estimation of the demosaicing
algorithm is prone to bias towards one of the four possible
patterns.

As the possible patterns will be compared in pairs, we
follow another approach that gives us both the simplicity
and impartiality of differential operators and the ability to
take different interpolation cases into accounts. Each test is a
comparison between two patterns, pixels that are not sampled
are thus interpolated using values from a known subset of
pixels.

For example, if we compare the CFA patterns R G
G B and

G R
B G , we know the considered red values can only be inter-
polated from horizontal neighbours, blue values from vertical
neighbours, and green values can be interpolated from all four
adjacent neighbours, because none of the other pixels would be
original in any of the two considered patterns. Furthermore, we
note that when an interpolation can be done in two directions

simultaneously, many algorithms can decide to interpolate in
only one direction, mainly to prevent interpolating across a
strong edge. In order to mimic this behaviour, we do the
interpolation simultaneously and then separately in the two
directions, then for each pixel we take the result with the
lowest absolute residual.

This leads us to define not one, but four different heat
maps that will be used in the different comparisons. Let I
be an image of shape (X,Y, 3)1, we define the horizontal
and (resp. vertical) heat map Hh[x, y, c] (resp. Hv[x, y, c])
as the absolute difference between I[x, y, c] and its two
horizontal (resp. vertical) neighbours. They correspond to the
interpolation of red or blue pixels on green-sampled locations.
The straight cross heat map Hc[x, y, c] is equal to either the
absolute difference between I[x, y, c] and the mean of its two
horizontal neighbours or its two vertical neighbours or both,
whichever of the three possibilities yields the lowest result. It
corresponds to the interpolation of green pixels. Finally, the
diagonal cross heat map Hd[x, y, c] is equal to the absolute
difference between I[x, y, c] and the mean of its two or four
diagonal neighbours following either or both of the diagonals,
whichever of the three possibilities yields the lowest result. It
corresponds to the interpolation of red pixels on blue-sampled
locations, and vice versa.

With these four heatmaps, we now describe how to reliably
compare different CFA positions. We start by assuming that
each of the four CFA patterns R G

G B ,
G R
B G ,

G B
R G and B G

G R are
possible, and we look for CFA patterns that are significantly
impossible. A grid position is considered significantly im-
possible if it is inferior to another grid position and the
NFA score of the comparison between those too positions
is below the set threshold. For each pair of CFA patterns
i, j ∈ {R G

G B ,
G R
B G ,

G B
R G ,

B G
G R }, i 6= j, we try to know which of

the two grids is stronger than the other, and how significantly.
We consider two cases, depending on the positions to compare.

The first case is when both positions share the same green
pattern, ie. if we are either comparing R G

G B with B G
G R or G R

B G

with G B
R G . Then we can only perform pattern comparisons

using the red and blue channels. Since the interpolation
between these two grids is done in diagonal, We look at the
red and blue pixels of Hd. We average over each 2× 2 block
the red and blue pixels corresponding to CFA pattern i, and
we do the same for j. We then compare the two samples and
multiply its score by 6 since all pairs are compared. If the
comparison is coherent, in other words if its score is below
the set NFA threshold, then the identified weaker of the two
grids is marked as impossible.

The second case is when both positions do not share the
same green pattern, ie. if R G

G B or B G
G R is compared with

G R
B G or G B

R G . We then can perform pairwise comparisons
in all three channels. As most demosaicing algorithms start
by interpolating the green channel, and use its values to
demosaic the other two channels, we consider the green
channel separately: For the green channel, we look at the pixels

1where the last dimension represents the colour channels.
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of Hc and compare those that correspond to an original pixel
in i to those that correspond to an original pixel in j. For the
red and blue channel, we also compare those that correspond to
each position, but we look in different heatmaps depending on
the compared patterns: If we are comparing R G

G B with G R
B G

or B G
G R with G B

R G we look at Hh for the red channel and
Hv for the blue channel. In the other two cases, we look at
Hv for the red channel and Hh for the blue channel. Each
comparison score is multiplied by 6 as above and by two since
green values are treated differently. Then, if the comparison
of the green channel is significant, and if at least one of the
two red and blue channels is significant and coherent with the
green channel, the weaker of the two patterns is marked as
impossible.

C. Finding forgeries

The main use of demosaicing artefacts is to find forgeries in
an image. This is done by partitioning the heat map H in small
windows. As with the global image, we decide in each window
which grid positions are possible and which are significantly
not, with the difference that we multiply the comparison scores
by the number of windows before thresholding on the NFA
score, as we want to control the number of false alarms in
each image, and not just in each window.

If a window is inconsistent with the global image, ie. if
there is no grid position which is possible both in the global
image and the window, then a forgery has been identified and
localised. An example of this result can be found in Fig. 2a.
In a genuine image, there should also be at least one grid
position which remains possible throughout all windows. If
this is not the case, then a forgery has been identified. The
windows having an impossible grid configuration may contain
a forgery. An example of this result can be found in Fig. 2c.

Since grid detection is usually easier and thus more precise
in the global image than in smaller windows, inconsistent
grids is the primary way of detecting forgeries. However, if
an image is fabricated from several images of similar sizes, or
if an object recovering an important part of the image itself
has been copy-moved, the CFA grid position of the forged
part of the image may have been accepted as possible in the
global image. In such cases, impossible grid configurations
could detect forgeries not found by the former.

III. EXPERIMENTS

As a sanity check of our method, we confirm the absence
of significant detections in images which have not been de-
mosaiced. We used a set of 19 high-quality images – available
in the linked online demo – that have been downsampled by
a factor of 8 to remove all traces of demosaicing or JPEG
encoding, as well as images of uniform and normal noise of
different sizes: for each kind of noise, we made 10 images of
size 128 × 128, 10 of size 256 × 256, 10 of size 512 × 512
and 10 of size 1024 × 1024, for a total of 80 noise images.
The dataset was tested uncompressed as well as with JPEG
compression of qualities 100, 99, 98, 95, 90, 80, 70, 60, 50,
30 and 10. As expected, no traces of demosaicing were found

(a) Found forged regions are
in red, and regions where the
exact CFA grid was identified
are in green

(b) Original image

(c) Regions where the respectively R G
G B , G R

B G , G B
R G and B G

G R Bayer
matrix positions are deemed possible (in green) or significantly
impossible (in red).

Fig. 2: Example of forgery detection. Images from [14].

by our algorithm. Choi et al.’s algorithm [7] was designed to
always select one CFA grid; naturally, when applied to images
which have not been demosaiced, it gives false detections in
all cases. The NFA formulation allows the proposed method
to make this decision automatically.

For the next experiment we demosaiced our 19 images
with bilinear (BI) demosaicing, adaptive inter-channel corre-
lation (AICC) demosaicing [15], and countour stencils (CS)
demosaicing [16]. We tested the images uncompressed and
compressed with the qualities above in Fig. 3a, as well as
uncompressed but cropped from the centre into images of size
256×256, 128×128, 64×64, 32×32 and 16×16 in Fig. 3b.

Before computing the accuracy of the detection, we rejected
all results of our algorithm whose NFA was above 1 · 10−3,
as we would usually do. This means that even if the correct
grid was found by our algorithm, we only accept the result if
it was significant. We compared the resulting accuracy with
Choi et al.’s algorithm [7]. In addition, we also use our method
without requiring channel coherence: when two compared
positions share their green sampled pixels, we compare them
through the mean of their red and blue channels, and when
they do not share their green channel, we base our decision
on those pixels only. This variation is labelled as “proposed,
classify”.

We note that every time an incorrect pattern was found
with our algorithm, the NFA associated with the detection was
above 1, which proves the reliability of our algorithm.

The proposed method correctly detects most of the CFA
patterns even at JPEG qualities as low as 70 or for images as
small as 32× 32 pixels.

Although the accuracy of [7] is usually higher, our results
are actually more useable: though less patterns are detected,
we can be confident on those that are identified. On the
contrary, since [7] always output a grid, we can have no
certainty in its output. When no NFA threshold is required,
our method becomes stronger than Choi. This compensate the
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(a) Accuracy of detections for varying JPEG qualities

(b) Accuracy of our detections for varying crop sizes

Fig. 3: Comparison of our method with Choi [7]

inevitable loss of accuracy we have when we require reliable
detections, and enables us to still have many detections even
when we need to be confident on our results.

The ability of the proposed algorithm to find the CFA
pattern even in small grids and compressed images, and most
importantly its reliable control of the false positives rate, make
it particularly suited for forgery detection.

IV. CONCLUSION

In this article, we constructed a method highlighting the
difference between original and interpolated pixels in demo-
saiced images. This method does not require an estimation
of the CFA interpolation algorithm, but still uses knowledge
on the specifics of demosaicing. We then explained how this

method could be used to find not only traces of demosaicing,
but also to get information on the position of the Bayer matrix.
Inconsistencies about this information is a very strong clue of
tampering in images, especially since the proposed approach
yields a strong control of the false positives rate.

However, neither the proposed method nor the state of the
art take into account the extensive inter-channel correlation
that takes place during demosaicing. Without taking this entan-
glement into account, it is either necessary to accept the results
of the strongest channels – which leads to strong classification
scores but prevents all control of the false alarms rate – or
to only accept results that are coherent across channels –
effectively enabling a control of the false alarms rate, but
rendering the method unable to decide on many windows.

Conjointly using the three colour channels to detect the CFA
pattern is difficult, mostly because the existing demosaicking
algorithms behave differently. But this approach will be nec-
essary to improve the detection of the CFA pattern.
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