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Abstract—Fast and accurate fault diagnosis is important to 

ensure the reliability and the operation safety of rotating 

machinery, which is often based on vibration analysis. In this 

paper, a novel approach combining Convolutional Neural 

Networks (CNN) and a Support Vector Machine (SVM) 

classifier is proposed, in order not only to leverage upon the 

advantages of deep discriminative features (learnt by the CNN) 

but also to exploit the generalization performance of SVM 

classifiers. Firstly, the Continuous Wavelet Transform (CWT) 

is employed to obtain the pre-processed representations of raw 

vibration signals. Then a novel CNN with a square-pooling 

architecture is built to extract high-level features, without 

requiring extra training and fine-tuning and thus demanding 

reduced computation cost. Finally, a SVM is used as classifier to 

conduct the fault classification. Experiments are conducted on a 

dataset collected from a gearbox. The results demonstrate that 

the proposed method achieves competitive results compared to 

other algorithms in terms of computational cost and accuracy.  
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I. INTRODUCTION  

Rotating machinery is widely used in industry usually 
operating for long time under harsh conditions. Gears and 
bearings are key machine element components and are often 
the main cause of sudden breakdowns and machine failures. 
Therefore there is an ever increasing need for early, accurate 
and reliable fault identification and diagnosis techniques, 
focusing towards the increase of operational safety and the 
decrease of unexpected stops, accidents, environmental 
pollution and globally of the maintenance cost. 

Deep Learning (DL) algorithms with multiple hidden 
layers, such as the Stacked Auto Encoder (SAE), Deep Belief 
Networks (DBN) and Convolutional Neural Networks (CNN) 
have been successful used for feature extraction in a number 
of visual recognition and speech classification problems. 
Recently, DL algorithms have been proposed as potential 
tools to perform fault detection and diagnosis in an automatic 
way [1]. It has been demonstrated that the models are more 
effectively in learning complex function mapping compared 
to shallow architectures [2]. Moreover the application of 
CNNs, being typical Deep Neural Networks, have presented 
high classification accuracy in different diagnosis cases, 
mainly due to their local connections and their weight sharing 
strategy. Wang et al. constructed a CNN model for feature 

extraction/learning and utilized Hidden Markov Models in 
order to classify rolling element bearing faults [3]. Guo et al. 
proposed a hierarchical CNN with an adaptive learning rate 
for bearing fault diagnosis [4]. Janssens et al. designed a 2D 
CNN with only one convolutional layer to extract/learn useful 
features from the frequency spectrum of raw signals 
improving the diagnosis performance [5]. On the other hand, 
time-frequency analysis using the Short-Time Fourier 
Transform (STFT) and the Wavelet Transform (WT) are 
developed for the rotating machinery fault diagnosis. 
Verstraete et al. explored different time-frequency methods to 
generate image representations  of the raw signals and then 
applied a CNN for classification and fault diagnosis [6]. 
Wavelet Packet features have been built by Zhao et al. and a 
Deep Residual Network (DRN) has been proposed for fault 
diagnosis of planetary gearboxes [7]. In the abovementioned 
literature, CNN presented superior classification capabilities, 
compared to traditional Machine Learning methods, by using 
different types of inputs including raw time signals, 
spectrums, 2d representations etc. However, the training of 
CNN relies heavily on the Back Propagation (BP) algorithm 
to update the model adapting it to the new fault diagnosis task, 
which sometimes is an obstacle due to high computational 
cost. Additionally the network is sensitive to the selection of 
hyper-parameters such as the learning rate and the batch size. 
Furthermore, during the search for an optimum network 
architecture for a specific task, the new network needs to be 
retrained from scratch, requiring each time many 
computational resources and restraining the ability to search 
for more suitable architectures throughout a large space of 
parameters. Recently, some researchers indicated that a 
certain network architecture with random, untrained weights 
could perform well in different tasks. Pinto et al. explored 
thousands of potential convolutional pooling architectures and 
found that a network with random weights could achieve 
significant gains in vision systems [8]. Jarrett et al. found that 
in certain network architectures, a two stage system with 
random filters present competitive results [9]. A similar 
analysis can also be found in [10], which showed that certain 
convolutional pooling architectures can be inherently 
frequency selective and translation invariant, even with 
random weights. The architecture proposed in [10] was 
verified and successful used for visual inspection and 
classification presenting good generalization ability [11].  
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Inspired by the previous work, this paper presents a new 
approach integrating the CNN model and a SVM classifier for 
vibration based gearbox fault diagnosis. The proposed method 
firstly exploits the Continuous Wavelet Transform (CWT) to 
provide good feature representations of raw vibration signals. 
Then a CNN with square-pooling architecture is used to 
extract high-level features. Finally, a SVM classifier is used 
for classification and fault diagnosis. By comparing the 
achieved results with the traditional CNN models and other 
diagnosis algorithms, it is shown that the proposed approach 
achieves competitive performance in terms of classification 
accuracy and computational cost. The remaining of the paper 
is organized as follows. In Section 2, the theory and the 
diagnosis procedure using the proposed method is introduced. 
In Section 3, a comprehensive experimental description and 
the result analysis are presented. Finally, some conclusions are 
drawn in Section 4. 

II. THE PROPOSED METHOD  

A. Support Vector Machines 

SVM based on Vapnik’s statistical learning theory is a 
popular supervised learning model which has been 
successfully applied for classification, regression and outlier 
detection tasks. The basic idea of applying SVM for 
classification tasks can be summarized in two steps: firstly, the 
input vectors are usually mapped into a high-dimensional 
feature space by kernel functions. Secondly, within the feature 
space, SVM attempts to seek an optical hyperplane to divide 
the data into different classes. The separating hyperplane is 
obtained by maximizing the distance between two parallel 
hyperplanes. 

SVM tries to seek a global optimized solution to avoid the 
problems of local minima, which presents good stable and 
generalization performance. A basic introduction is given here 
but a more detailed description about SVMs and their 
implementation can be found in [14]. In a training set 
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where the weigh K vector 
dK  and the b is the bias scalar. 

The vector K and the scalar b can be used to define the 
position of the separating hyperplane. To find the optimal 
hyperplane, one can solve the following constrained 
optimization problem: 
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where  is a slack variable. This variable measures the 

distance between the margin and the example data, which 
allows some data to be classified on the wrong side of the 
decision boundary. C is the user-specific penalize parameter 
of the error term. The constrained optimization problem can 
be transformed into a dual problem and can be effectively 

solved by introducing Lagrange multipliers for constraints. In 
addition, SVM provides a unique solution to solve the 
nonlinear problem and according to the different classification 
problems, a different kernel function can be selected to obtain 
the optimal classification results. 

B. Design of a CNN 

The Topography Independent Component Analysis 
(TICA) network is used in order to build a CNN with a square-
pooling architecture, learning feature representations from 
raw signals [10, 12]. A typical TICA network consists of three 
layers, including the input layer, the convolutional layer and 
the square-pooling layer, as shown in Fig. 1. The network 
learns to construct features in a topographical map by pooling 
together local groups of related features. TICA network can 
be regarded as a two-stage optimization procedure with 
Squares and Square-Root nonlinearities respectively at each 
stage. 

...

...Input
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Pool

()2

()

 

Fig. 1.  The structure of TICA 

In the first stage, given an input data {x(t)}
T 

t , the CNN 
firstly extracts features by computing the convolution on the 
raw input data with weights W between the input and the 
hidden nodes. The weights W in the convolutional layer with 
a set of kernels are applied on each part of the input image and 
then the inner product of the filter template is calculated at 
each location. In the second stage, the square-pooling 
architecture is adopted in the pooling layer. The pooling 
operator can be viewed as a nonlinear activation function, 
which includes a square-operation and a summation operation. 
The activations of the pooling units are equal to the sum of the 
squares of the units in the previous convolution layer. The 
weights V in the second layer are the elements of the logical 
matrix (Vij = 0 or 1) and are kept fixed in order to represent 
the topographical structure of the neurons and to create 
invariance to small transformations of the input in the first 
layer. The hidden unit output pi refers to the pooling features, 
preserving important information while discarding irrelevant 
details by grouping the spatially neighboring neurons in a 
lower layer. It further receives the input signal from the layer 
below and returns a scalar value. Finally, the parameter W can 
be solved by finding sparse feature representations in the 
second layer using the equation:  
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where W∈
m n  is the input dimension, m is the number of 

hidden units in a layer and V∈
m m is a fixed matrix. 

Moreover Vik = 1 or 0 marks whether the pooling neuron is 
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connected to the convolution feature map units k or not. 
Furthermore, the orthonormal constraint WT*W=I forces the 
network to provide the diversity for the features extracting 
compact feature sets [11, 13].  

C. Hybrid structure of the proposed CNN-SVM 

In this section, a hybrid architecture combining a CNN 
and a SVM is constructed for the fault diagnosis of gearboxes 
as presented in Fig. 2. The proposed network consists of two 
parts: (a) the feature extraction using the CNN and (b) the fault 
classification using the SVM. The proposed CNN includes an 
input layer, a convolution layer and a square-pooling layer. 
Compared to the standard CNN, the proposed architecture 
presents several differences: (1) The traditional nonlinear 
activation function in standard CNN is replaced with Square 
and Square-Root nonlinear functions respectively in the first 
and the second layer. (2) The local weights of the constructed 
CNN are restricted by the orthogonality weights. In the 
proposed CNN-SVM approach, the parameters of the 
convolutional layer are randomly initialized and are kept fixed 
during the training stage, for a number of reasons listed below. 
Firstly, we want to explore the feature learning capability of 
CNN with a square-pooling architecture under the random 
weight initialization. Thus more attention is paid on the 
contribution of the intrinsic properties of the architecture 
alone. Secondly, some works have found that certain CNN 
architectures with random, untrained weights can obtain 
competitive results [8-11]. This result has an important 
practical significance highlighting the importance of selecting 
the most suitable architecture rather than updating the weights. 
In this way, the testing accuracy can be improved by selecting 
an appropriate structure with fast speed. 

D. Fault diagnosis based on the proposed CNN-SVM  

After the construction of the hybrid CNN-SVM, the 
gearbox fault diagnosis can be implemented based on the 
proposed method, which is divided into three steps. Firstly, the 
time-frequency representation of a vibration signal acquired 
with CWT is adopted for the network input. Then, the 
convolution layer extracts 2D structure features from the input 
images and preserve the relationship between the pixels. The 
Square-pooling layer reduces the dimensionality of each map 
retaining the useful information. Finally, a SVM classifier is 
attached for effective supervised learning and fault 
classification. It is noted that in the CNN architecture shown 
in Fig. 2, the convolutional kernel size is set equal to 7. 
Experiments show that a small kernel size is easily disturbed 
by high frequency noise while a large kernel size may lead to 
loss of details, reducing the accuracy. In addition, the number 
of the output filter is set equal to 8, which is considered high 
enough to achieve a high and stable accuracy in the model, as 
by increasing the number of the filters little improvement on 
the accuracy is obtained. 

SVM

Input

Conv Pool

()2
√ 

32×32 8@7× 7 8@2× 2

 

Fig. 2.  The diagnosis framework of CNN-SVM model 

III. EXPERIMENT DESCRIPTION AND ANALYSIS 

A. Experiment description 

A set of gear and bearing fault experiments, conducted on 
an automobile five-speed gearbox, is used for validation. The 
test rig is shown in Fig. 3. Two severity levels of inner race 
bearing faults, with a depth equal to 0.2mm and 2mm are 
respectively introduced at the bearing of the output shaft. In 
addition, a minor chipped fault and a missed tooth fault have 
been respectively induced at the fifth-shift gear. Compound 
faults are also considered, containing bearing and gear faults. 
Totally, seven types of health conditions have been obtained. 
An accelerometer has been mounted on the bearing house of 
the output shaft to collect vibration signals with a sampling 
rate of 24 KHz. The output shaft load torque is set equal to 
50N•m. The vibration measurements have been captured 
under three shaft speeds: 750rpm, 1000rpm and 1250rpm. 
Two time-domain signals including the gear with minor 
chipped tooth defect and the bearing with 0.2mm inner race 
defect are presented in Fig. 4. It can be observed that there are 
some repetitive impulsive signals captured, which could 
indicate the change of signal with time, but fail to localize 
variant and transient conditions simultaneously in time and 
frequency domain. In the light of its strong feature 
representation ability, wavelet transform is adopted at the 
preprocessing step to obtain good signal representation. The 
Morlet wavelet is used for its advantages to the detection of 
mechanical signals [6].  

 

Fig. 3.  The gearbox test rig 

TABLE I.  DESCRIPTION OF THE GEARBOX DATASET 

Fault Types Number of 

samples 

Class 

Label 

Gears Bearings   
Health Health 300 1 

Minor chipped tooth Health 300 2 

Missing tooth Health 300 3 

Health 0.2mm 300 4 

Minor chipped tooth 0.2mm 300 5 
Missing tooth 0.2mm 300 6 

Missing tooth 2mm 300 7 
 

 

 

(a) Time domain signal of minor chipped tooth defect 
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(b) Time domain signal of 0.2mm inner race defect 

Fig. 4. Time signals of two fault types (0.5 sec) 

In order to calculate the time-frequency representations 
from the vibration measurement, 12000 data points (0.5 
seconds) are used from the time-series signals to form one 
sample, allowing the capture of the local characteristics. Each 
sample is transformed into a magnitude scalogram using the 
CWT with 1024 scales. The dimension is further downsized 
into 32×32 using the bicubic interpolation algorithm 
balancing the tradeoff between computation cost and 
accuracy. 100 samples are generated under each speed. 
Therefore, 300 samples have been obtained for each health 
condition under three different speeds. The complete dataset, 
used for the algorithm verification, is composed of 2100 

samples (i.e. 300 samples ×7 health conditions), as presented 

in Table I. In order to verify the effectiveness of the proposed 
method, 30% of the samples are randomly selected for training 
and the rest are used for testing. 

B. Analysis of feature effectiveness 

The ability of the proposed CNN with random weights to 
extract robust features improving the classification 
performance is evaluated. The constructed CNN is firstly used 
to extract good features, which are further fed into a classifier 
for diagnosis. Liblinear SVM [14] is adopted to conduct the 
multiclass classification task and only one parameter should 
be selected. In addition, another typical classifier the Softmax 
is also utilized for verification. Ten trails are carried out to 
reduce the random error introduced by the parameter 
initialization. All the experiments have been carried out in a 
PC with Matlab 2017b environment running in a core Intel i7 
2.8GHz CPU. The average testing accuracies of final results 
are listed in Table II. 

TABLE II.  DESCRIPTION OF THE GEARBOX DATASET 

CNN with 

different classifier 

Testing 

accuracy (%) 

Testing 

deviation (%) 

Softmax 99.68 0.21 

SVM 99.72 0.22 
 

 

Analyzing the results, it can be seen that both SVM and 
Softmax achieve a high accuracy and a small standard 
deviation. SVM achieves a 99.71% accuracy, which is slight 
higher than the 99.68% of the Softmax. In addition, the SVM 
has less parameters to be selected compared to Softmax, 
which provides a relative better generalization performance. 
Thus it is demonstrated that the extracted CNN features have 
strong diagnosis discriminative and generalization ability. 

C. Analysis of different CNN architectures 

A comparison between the constructed CNN with a 
square-pooling architecture and the standard CNN model is 
carried out in order to verify the superiority of the constructed 

CNN model in feature learning capability. The standard CNN 
shares the same network architecture and parameters with the 
constructed CNN. The parameters of the convolution kernels 
in the standard CNN are randomly initialized without further 
pre-training. The samples are input into the different CNN 
models for feature extraction. Then the SVM is employed for 
the fault classification. Two different pooling schemes 
including the standard CNN with mean pooling and the 
standard CNN with max pooling are implemented for 
comprehensive comparison. Ten trails are carried out and the 
average results (Mean and Standard Deviation (SD)) are 
shown in Table III. It can be seen that the standard CNN with 
the average pooling architecture achieves a 95.24% accuracy 
and a large standard deviation of 2.93%. The standard CNN 
with the max pooling scheme receives a 97.08% accuracy with 
a standard deviation of 2.71%, providing better results than 
the average pooling operation. This is possibly due to the fact 
that the max pooling operation attempts to extract the most 
important features by taking a large local magnitude. This is 
similar to the operation of squaring convolutional features in 
the proposed method. On the other hand the average pooling 
takes all the low magnitudes into consideration. After the 
average pooling operation, the contrast of the new feature map 
will be reduced, leading to loss of useful discriminative 
features. In contrast, the proposed method achieves better 
results compared to the standard CNN architectures, 
demonstrating the superiority of the architecture design. 

TABLE III.  RESULT COMPARISON WITH DIFFERENT CNN 

ARCHITECTURES  

SVM integrating CNN Testing mean 

accuracy (%) 

Testing SD (%) 

CNN with average  pooling 95.24 2.93 

CNN with max pooling 97.08 2.71 

The proposed method 99.72 0.22 
 

 

D. Comparison with different methods 

In order to further illustrate the superiority of the proposed 
method, three classical classification algorithms including the 
SVM and the standard Artificial Neural Network (ANN) and 
Deep Learning CNN are tested on the same datasets for 
comparison. (1) SVM [14]. The Liblinear SVM is adopted to 
conduct multiclass classification tasks. For the regularization 
term C, a large range of values from {0.001, 0.01, 0.1, 1, 10} 
are evaluated by searching the given parameter space.                           
(2) ANN. A three hidden layers network is constructed. The 
network architecture is 1024-500-200-100-7, where the input 
is 1024 and the hidden nodes in three layers are 500, 200 and 
100, respectively. The learning rate is set to 0.1 with a batch 
size of 30. The network is trained with 200 epochs. (3) CNN. 
The same convolutional kernel and number of filters are set as 
at the constructed CNN. Max pooling is used in the pooling 
layer operation. The learning rate is set equal to 0.1. The 
weights in CNN are fully trained with 200 epochs. For the 
SVM and ANN, The time-frequency image is converted from 
32*32 into one vector representation (1024 data points), 
which is suitable for the network input. Ten repetition 
experiments are conducted and the final results are averaged. 
The ten trails for the test result comparison of different 
methods are presented in Fig. 5. The average diagnosis 
accuracy and the computational cost of the training 
computations are listed in Table IV and the confusion matrix 
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in the first trial are also displayed in Fig. 6 for comprehensive 
analysis. 

 

Fig.5. Accuracy (%) for each trial for different methods 

TABLE IV.  THE ACCURACY AND COMPUTATION 

COMPARISON BETWEEN DIFFERENT METHODS 

Model Accuracy  ± STD (%) Average Time (s) 

SVM 93.87±1.95 3 

ANN 95.97±2.77 43 

CNN 98.30±2.62 87 

Proposed 99.72±0.22 11 

 

 

From the Fig. 5, Fig. 6 and Table IV, it can be seen that 
the traditional machine learning method SVM achieves 
93.87% testing accuracy with a standard deviation of 1.95%, 
but requires only 3s as computation cost, which demonstrates 
its advantage of shallow architecture. The ANN also obtain 
testing accuracy of 95.97% with a large standard deviation of 
2.77%. More specifically, compared to SVM and ANN, the 
standard DL algorithm CNN obtains 98.30% accuracy, 
showing the advantages of deep architecture in learning 
discriminative representations. However, one disadvantage is 
that it requires a long training time equal to 87s. In contrast, 
the proposed method performs better in testing accuracy and 
standard deviation and requires only 11s to train the model, 
which is a large advantage compared to standard CNN. This 
is mostly because the traditional CNN has many hyper-
parameters needed to be carefully set i.e. learning rate, 
momentum and training iterations. Thus, its performance is 
easily influenced by the parameter selection. In addition, the 
model with deep architecture has many weights to be 
optimized during the training stage, which also increase the 
risk of over-fitting problem. The proposed method modifies 
the structure of the CNN with random weights to extract 
features, allowing for fast parameter selections reducing the 
human intervention.  

 

Fig. 6. The confusion matrix of the first trial 

IV. CONCLUSION 

A novel method for gearbox fault diagnosis based on CNN 
and SVM has been presented in this paper. The acquired data 
from an automobile experimental test rig is firstly 
preprocessed using the CWT to produce robust 2D feature 
representations. Then a novel CNN with square-pooling 
architecture is introduced to extract high-level abstract 
features. Finally, the classification process is implemented 
using a SVM. In this case, CNN with random weights 
provides high classification accuracy in two typical classifiers 
including SVM and Softmax. The results are much better than 
the traditional CNN architectures, where weights are not 
trained. In additional, the method also presents superiority in 
terms of classification accuracy and training speed compared 
to the standard ANN and CNN requiring extra time to update 
the parameters of their models.  
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