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Abstract—In this work, we tackle the problem of end-to-end
language identification from speech. To this end, we propose
the use of a residual convolutional neural network aiming at
exploiting the ability of such architectures to take into account
large contextual segments of input data. Moreover, in order for
variable input lengths to be supported by the proposed setting, a
self-attention mechanism is employed on top of the final convolu-
tional layer. This results in a learnable temporal feature pooling
scheme that allows for embedding varying duration utterances
into a fixed dimension space. Evaluation is performed on data
containing ten oriental languages under different test conditions,
namely: short-duration recordings, confusing languages trials, as
well as a set of trials in which non-target unseen languages are
included. End-to-end evaluation of the proposed framework is
thus shown to significantly outperform well-known benchmark
methods under considered evaluation conditions.

Index Terms—Language identification, Residual convolutional
neural networks, Attentive features pooling.

I. INTRODUCTION

Being able to identify spoken languages from speech data is
a useful feature in several applications of speech processing.
Language recognizers can be used for conditional prediction
or hierarchical modelling on downstream tasks in a given
pipeline. Speech recognition or speaker verification, for in-
stance, are examples of such cases in which prior information
of spoken language will likely boost performance. Commonly,
language identification (LID), i.e. identifying the spoken lan-
guage from a given speech example under the assumption a
single language is present, is tackled using similar approaches
to speaker verification/recognition [1].

Well known i-vectors [2], for instance, are obtained by first
computing a universal background model, which is commonly
a Gaussian mixture model, followed by factor analysis on
top of statistics of the latents with the aim at obtaining a
low dimensional representation that embeds both channel- and

The authors wish to acknowledge funding from the National Research
Council of Canada (NRC) through the Canadian Indigenous Languages
Technology project under contract 909859, and from the Natural Sciences
and Engineering Research Council of Canada (NSERC) through contract/grant
RGPIN-2016-4175, and RGPAS-493010-2016. Any opinions, findings, con-
clusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the NRC and NSERC.

speaker-dependent information. Classification is performed
with probabilistic linear discriminant analysis (PLDA) [3].
Alternatively, neural networks have been applied in recent
years to substitute some components of speaker/language
recognition frameworks, such as generating alternative low-
dimensional embeddings or performing recognition in an end-
to-end fashion, thus eliminating the need of a post-trained
binary classifier. Recently proposed x-vectors [4], for example,
leverage feed-forward neural networks operating in different
time scales to compute low-dimensional embeddings from
utterances of varying lengths. Follow-up approaches, in turn,
have extended the idea of including context by employ-
ing convolutional neural networks across time [5], [6], i.e.
performing 2-dimensional convolutions over time-frequency
representations of speech, such that full time-dependent infor-
mation is taken into account for low-dimensional computation,
rather than having only short-term time-dependencies mod-
elled through contextual frames, as is the case for x-vectors.

Training in both aforementioned cases has been performed
for speaker recognition, i.e. the model is used as a classifier
aiming to identify the speaker in a given utterance. The
softmax layer outputs parameterize a conditional multinoulli
or categorical distribution over speakers and parameters are
learned via maximum likelihood estimation through mini-
mization of the cross-entropy loss. At test time, outputs of
intermediate layers are used as representations on top of which
a binary classifier can be trained for speaker verification for
both open- and closed- set testing conditions.

In this contribution, we introduce a convolutional neural
network aiming to perform language identification. Language-
dependent long-term dependencies are modeled by: (i) convo-
lutions in the time dimension, and (ii) a self-attention layer
[7] which weighs last layer time-steps for weighted statistics
pooling. Furthermore, aiming to enforce language dependency
on models outputs, we add triplet-loss along with the maxi-
mum likelihood criterion previously described. The proposed
method is evaluated on a dataset composed by recordings from
ten oriental languages and shows relevant improvements over
strong baselines on several test conditions. Moreover, end-
to-end evaluation is also carried out showing that directly
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utilizing our model’s outputs as scores, i.e. discarding PLDA,
matches i-vectors+PLDA’s results.

II. BACKGROUND

A. Residual learning

Residual architectures have been part of several recent
relevant results using convolutional neural networks. Firstly in-
troduced in [8], ResNets constitute a set of architectures made
up of a series of so-called residual blocks, which determine
how a feature transformation should differ from the identity,
rather than how it should differ from zero [9]. Residual blocks’
transformations present the basic form: X̂ = F(X) +X . The
residual term comes from the fact that the input is directly
used to compute the transformation’s output, which in a neural
network represents a direct path for gradients to “flow” during
loss backpropagation for computation of stochastic gradient
descent updates. F(X) is generally a set of convolutional
layers, followed by nonlinear activation functions and normal-
ization layers.

Recent literature has shown that residual blocks contribute
in yielding loss landscapes which are easier to train, in the
sense that ill-conditioned chaotic landscape regions become
less frequent when such architectural feature is employed [10].
Moreover, near identity transformations were studied in depth
and guarantees were introduced for the linear and nonlinear
F(X) cases in [11] and [9], respectively.

B. Attention mechanisms

Several attention mechanisms have been introduced recently
in architectures aimed at processing temporal data. In general
terms, attention blocks learn to conditionally weigh time-steps
given inputs representations on some inner layer of a model.
Such blocks have been shown to yield high performance across
several domains including text [12], [13], speech [5], and
image processing [14].

Here, we employ a simple attention scheme usually referred
to as self- or intra-attention. Consider y1:T as a set of vectors
corresponding to the outputs of a given neural network for
some input. A linear transformation W is shared across all
time-steps t, and applied to each yt resulting in a set of scalars
a1:T , according to:

at = tanh (Wyt). (1)

A set of normalized weights summing up to 1 is obtained
through the softmax operator:

wt =
eat∑T
t=1 e

at

, (2)

and the attention layer output is finally given by:

y =
T∑

t=1

wtyt. (3)
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Fig. 1. Model employed for language recognition.

III. PROPOSED MODEL

We introduce a convolutional architecture aiming to take
long-term contextual information into account, an inherent
feature of stacked convolutional layers. We thus propose a
residual architecture consisting of a modified ResNet-50 [8]
in which 1-dimensional convolutional layers are employed.
Inputs correspond to 13 Mel-frequency cepstral coefficients
obtained from incoming speech, which are initially treated
as single-channel images. An input convolutional layer is
responsible for shrinking the cepstral coefficients dimension to
1, and all following convolutional layers operate over the time
dimension only. Self-attention is then employed on top of the
last convolutional layer, which means the channels dimension
corresponding to the last temporal convolution layer gives the
final embeddings size, once time-steps are pooled using the
self-attention mechanism described in Section II-B. A diagram
describing the proposed model is presented in Figure 1.

We further highlight that, differently from other approaches
that employ causal convolutions for temporal dependency
modelling [15], the setting explored herein assumes access to
full recordings for computation of each output time-steps. This
allows us to compute fixed dimensional language-dependent
embeddings relying on full recordings.

During training, two strategies are combined so as to
enforce language dependency on embeddings y. We directly
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train the model for classification by projecting y into an
output layer using a fully connected additional layer, and
train the model via maximum likelihood estimation, i.e. with
multi-class cross-entropy minimization, as commonly done
for speaker recognition [5], [6], [16]. Moreover, aiming to
enforce language discriminability, triplet-loss minimization is
jointly performed on top of y along with maximum likelihood
estimation, employing a distance metric based on the cosine
similarity. The most common definition of triplet-loss is given
by:

T = max(d+ − d− + α, 0), (4)

where d+ and d− correspond to a distance measure between
pairs of embeddings obtained from recordings of the same,
and from different languages, respectively. Parameter α is a
hyperparameter commonly referred to as margin.

The max(x, 0), x ∈ R, operator is used so that triplets,
i.e. pairs corresponding to the same and different languages,
respectively, that already have low d+ and high d− stop
influencing training. Here, we follow the approach in [17] and
enforce concentration of same language embeddings by using
a soft-margin variation of the triplet-loss given by:

T = softplus(d+ − d−), (5)

where the softplus operator for an argument x ∈ R is defined
as:

softplus(x) = log(1 + ex). (6)

Different works have proposed triplet-loss variations using
several distances d. Here we employ:

d(y1, y2) = 1− y1 · y2
||y1||2||y2||2

, (7)

where the second term is the cosine of the smallest angle
between y1 and y2.

Our final training loss is thus defined as the sum of the
multi-class cross-entropy with the triplet-loss, and the cross-
entropy term will be given by:

CE = log
[ ∑
k∈Z

exp sk

]
− sz, (8)

where Z is the set of training speakers, and sk, k ∈ Z ,
represents the score corresponding to speaker k, while sz is
the score for the correct speaker in the input recording. Scores
are obtained through a fully connected layer using embeddings
y as its inputs. Our final training loss will be thus the sum of
the two described components: L = CE + T .

IV. EXPERIMENTAL SETUP AND RESULTS

A. Training

We perform gradient-based minimization of the sum of
cross-entropy and soft-margin triplet losses. RMSProp [19]
is employed for optimization with its smoothing constant set
to 0.99. The global learning rate starts at 0.001 and is halved

TABLE I
PERFORMANCE COMPARISON OF PROPOSED SYSTEM (LAST THREE ROWS)

AND BENCHMARKS BASED ON EQUAL ERROR RATE (%) AND AVERAGE
COST PERFORMANCE (Cavg ).

Short-duration Full-length
EER (%) Cavg EER (%) Cavg

i-Vector+LDA [18] 18.04 0.1784 6.12 0.0598
i-Vector+PLDA [18] 17.51 0.1746 5.86 0.0596

TDNN [18] 14.04 0.1282 11.31 0.1034
LSTM [18] 15.92 0.1452 12.76 0.1154
LDA+PLDA 14.14 0.1361 3.59 0.0343
LDA+Cosine 15.05 0.1465 4.47 0.0435
End-to-end 13.26 0.1291 2.76 0.0257

once the classification error rate, measured on a validation set
held out of training, plateaus for 30 epochs. Training is carried
out in a single Titan X NVIDIA GPU, with minibatches of
size 64. Minibatches are constructed such that two random
recordings of each language are sampled sequentially to form
same language pairs (positive), and a random recording from
a different language is selected to compose the different
languages pair (negative). One epoch is considered finished
when each language is selected 1000 times to compose positive
pairs1.

B. Dataset

We evaluate our proposed framework using the dataset
introduced for the AP18-OLR Challenge [18], which consists
of recordings corresponding to speech in 10 different oriental
languages. Information about speaker identity, gender, or age
were not utilized, nor was phonetic information.

The AP18-OLR database is divided into three subsets,
namely train, development and evaluation sets. We further
introduce multi-condition training data by augmenting the
original train partition with supplementary noisy speech, cre-
ated by corrupting original examples adding reverberation
(reverberation time varies from 0.25s - 0.75s), noise at signal-
to-noise ratio (SNR) ranging from 0 to 15 dB, as well as by
adding background noise such as music (SNR within 5-15dB),
and babble (SNR within 10-20dB). Noise signals were taken
from the MUSAN corpus [20] and the room impulse responses
(RIRs) used to simulate reverberant effects were taken from
[21]. The described data augmentation procedure increases the
amount and diversity of train data, which helps in avoiding
overfitting of employed models. Moreover, we empirically
observed better performance when silence segments were
kept in both training and test recordings, thus voice activity
detectors are not required. We hypothesize our model is able
to learn pause patterns in different languages.

C. Results and discussion

We start the evaluation of our proposed model and training
scheme using the development partition of the AP18-OLR
Challenge, which corresponds to the evaluation data for the
previous year challenge. Trials lists are provided along with

1Code is available at: https://github.com/joaomonteirof/e2e LID
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TABLE II
PERFORMANCE COMPARISON OF PROPOSED SYSTEM (LAST THREE ROWS) AND BENCHMARKS BASED ON EQUAL ERROR RATE (%) AND AVERAGE COST

PERFORMANCE (Cavg ). CONFUSING LANGUAGES CORRESPOND TO CANTONESE, KOREAN, AND MANDARIN.

Short-duration Confusing languages Unseen non-target languages
EER (%) Cavg EER (%) Cavg EER (%) Cavg

i-Vector+Cosine 18.02 0.1780 10.71 0.1069 7.77 0.0577
i-Vector+PLDA 17.50 0.1743 10.66 0.1059 7.51 0.0524
Tandem+Cosine 15.73 0.1502 13.81 0.1387 8.98 0.0683

Benchmarks Tandem+PLDA 15.30 0.1461 13.33 0.1324 8.37 0.0596
LSTM+Cosine 20.10 0.1978 9.11 0.0840 7.78 0.0537
LSTM+PLDA 19.14 0.1896 8.78 0.0819 7.49 0.0490

LSTM 24.00 0.2321 7.54 0.0738 7.57 0.0491
LDA+Cosine 14.63 0.1432 9.81 0.0967 6.44 0.0463

Proposed LDA+PLDA 13.48 0.1328 8.28 0.0810 5.97 0.0369
End-to-end 12.62 0.1246 6.80 0.0669 5.65 0.0315

data for both short-duration condition, i.e. recordings with
1 second duration, and full-length test recordings. We thus
proceed to evaluation on the test partition which includes
three conditions, namely short-duration recordings, trials from
known confusing languages only, and a corrupted list of trials
in which recordings from languages not represented within
train data are included. Three strategies are used for scoring
trials for our models: (a) PLDA trained on the embeddings
of the full set of training data; (b) The cosine similarity
between enrollment language models obtained by averaging
embeddings of all training recordings from a given target
language, and the embedding of the test recording; (c) End-
to-end: The output of the softmax layer corresponding to
the claimed language is used as score. Linear discriminant
analysis (LDA) was further used to reduce the dimensionality
of embeddings from 128 to 64 in the case of PLDA and cosine
scoring.

For performance reference on development data (Table
I), results, as reported in [18], obtained with i-vectors [2]
using both LDA and PLDA backends are used as baselines.
Moreover, two neural network based systems, a TDNN [22]
and a LSTM [23] with end-to-end scoring, are also used
as benchmarks. Results in terms of equal error rate (EER)
and average cost performance (Cavg) are reported in Table
I. More details about both metrics can be found in [18].
Results on evaluation data are presented in Table III. In
that case, we provide further results from three benchmark
systems, namely: i-vectors, statistics of a GMM-UBM trained
on tandem features [24], and a convolutional-recurrent model
consisting of 6 convolutional layers followed by a 2-layered
bi-directional LSTM, trained with the same setting as the
proposed model.

As per results reported in Table I for development data, one
can notice that the i-vector+PLDA approach lacks robustness
to short-duration recordings, which was observed also in the
case of speaker verification [5]. TDNN and LSTM perform
better than i-vectors in the short-duration case, which does
not hold in the full-length evaluation, indicating such models
are not effective on handling longer-term dependencies, due to
limited context for the TDNN case, and known training diffi-
culties in the long sequences regime faced by RNNs, including

LSTMs. Our proposed approaches significantly outperform all
considered baselines in the full-length evaluation, indicating
the added context together with the employed attentive pool-
ing effectively improve modelling of long-term dependencies.
More importantly, for the end-to-end scoring, i.e. without the
use of any extra training step after training the convolutional
model, EER in both short-duration and full-length conditions
are lower when compared to all evaluated benchmarks in both
testing conditions.

Results in Table III for the evaluation data corroborate
previous findings in that end-to-end scoring of the proposed
method outperforms all compared benchmarks in all evaluation
conditions. We specifically point out the fact that a good
performance is achieved even when unseen languages are
included and end-to-end evaluation is performed, which we
attribute to the effect imposed by triplet loss minimization of
enforcing both class-separability and concentration of embed-
dings belonging to the same class. The model trained using the
proposed strategy was able to yield improvements in terms of
average cost performance of 28.51%, 36.83%, and 39.88% for
short-duration, confusing languages, and open-set evaluation
conditions, respectively, when compared to an i-vector system
with PLDA scoring. We finally highlight that PLDA and
cosine similarity backends, which would be valid scoring
strategies in an open-set evaluation scenario, i.e. comparing
pairs of recordings regardless of the inclusion of corresponding
languages within training data, are also able to outperform
studied benchmarks.

V. CONCLUSION

We introduced a model along with a training strategy with
the goal of performing end-to-end language identification from
speech. A modified ResNet-50 is proposed along with a self-
attention block, employed for temporal pooling, i.e. weighing
representations in different time-steps, which further behaves
as a mechanism for the model to learn long-term time depen-
dencies. Evaluation is carried out using a dataset containing
recordings corresponding to 10 oriental languages, and varying
evaluation conditions. Recognition scores provide empirical
evidence that the proposed setting significantly outperforms a
set of well known benchmark systems.
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