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Abstract—What influences people’s perception of safety in an
urban environment? Does everyone perceive safety the same
way or do different people look for different contents in an
image, safety-wise? We present a user analysis on a crowd-
sourced dataset that contains pairwise comparisons regarding the
perceived safety of street imagery from different municipalities
in the greater Lisbon area, Portugal. We use state-of-the-art
semantic segmentation to extract the contents of images and
cluster different people according to what they perceive as safe.
Then, we study semantic classes and analyze clusters of users
for semantic elements appearing in images classified as safer
(or more dangerous). The results show that clusters share a
lot of similarities. Our analysis evidences that, for users with
more pairwise comparisons, there is only one group, while
spurious groupings appear when users contribute less. This result
emphasizes that a pairwise image comparison dataset potentiates
agreement of users in perceptual tasks, for moderate comparison
data size.

Index Terms—Urban perceived safety, Semantic urban segmen-
tation, Crowdsourced perceptual dataset, Pairwise comparisons.

I. INTRODUCTION

Understanding what makes people feel safer allows policy-
makers to better shape neighborhoods, improving residents’
well being, and enables citizens to monitor and draw conclu-
sions on the collective perception of safety.

Quantifying perception is a difficult problem mainly due
to the need for covering a full range of different levels of
perception with judgments of much more than one person,
and to the subjectivity and variability of perception judgments
themselves. One of the most popular approaches for perception
assessment is through lengthy surveys [1], covering a small
sample and prone to biases [2]. Side by side pairwise com-
parisons address these shortcomings but transfer complexity
to the data processing side. This method is used to approach
the very relevant question of whether different profiles of
safety perception can be found among participants or not,
and how can we describe those profiles. This paper shows
that, for urban perceived safety, our data in the form of
pairwise comparisons on street imagery has, indeed, a strong
inter-observer agreement. They also show that human-related
contents are linked with safer perception while vehicle-related
contents are seen as unsafe. From the specificity of our data,
we developed this conclusion based on the analysis of the

semantic contents and individual preferences using state-of-
the-art semantic segmentation methods. Our data does not
comply with the assumptions of repeated observations because
pairs of images are randomly generated from a very large
pool of images, and so, there are not, in general, repeated
individual comparisons as assumed in the work stemmed from
reference [3].

II. RELATED WORK

Estimating the urban safety perception and computing its
relationship with socio-economic indicators are longstanding
challenges for the scientific community. Social scientists have
been studying links with, for instance, neighborhood disor-
der [4], physical activity among the elderly [5] and academic
achievement [6]. More recently, the increasing availability and
diversity of data sources concerning the physical city, such
as street imagery from Google Street View, combined with
new computer vision techniques have allowed researchers to
conduct studies both with more resolution and on a larger
scale [7]. These resources have been used to assess urban
greenery [8], estimate multiple demographic indicators [9] and
study what drives physical change in neighborhoods [10].

The Place Pulse project collected crowdsourced pairwise
comparisons of images from all over the world to estimate
perceptions of safety, wealth or beauty on a global scale [11].
These data were then used to estimate safety perception from
street imagery alone using both generic image features (only
concerning safety in Boston and New York) [12] and deep
learning [13]. Computer vision has seen big improvements
in recent years due to deep neural networks, which were
enabled by the availability of very large datasets. Semantic
segmentation has been a fundamental area of research as it
provides visual understanding. Street imagery semantics is
especially relevant for many urban applications, for example,
autonomous driving. Researchers have, thus, developed mul-
tiple datasets that focus on urban scene contents like COCO-
Stuff [14], Mapillary Vistas [15] and Cityscapes [16]. Due to
the large amount of data required by deep learning, the use
of artificial scene datasets in conjunction with real imagery
has also shown good results in semantic segmentation [17].
There has also been significant work in developing better
feature extraction networks [18]–[21] to better capture objects
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at multiple scales and improve feature resolution, which are
the two main challenges in semantic segmentation.

As far as the authors know, the present work is the first
agreement analysis of image semantics from a large perception
dataset. Due to the low probability in forming a specific
image pair, our agreement study follows a new and specific
methodology. Our analysis evidences strong agreement on
image semantics for hundreds of different observers.

III. THE CITY-SAFE DATASET

Our City-SAFE dataset, inspired by the Place Pulse
project [11], comprises pairwise comparisons for perceived
safety on street images from the greater Lisbon area (2056
from Lisbon, 1008 from Amadora and 2034 from Cascais).
Images were retrieved from the Google Street View API,
where the coordinates of each image were obtained using a
grid bounded by polygons of the municipalities’ limits. The
available images for collection were taken on either sunny or
cloudy days, from 2009 to 2018.

We chose to collect pairwise comparisons as it makes the
participants’ task easier and provides more reliable data when
compared to directly providing a score [2]. Place Pulse has
also shown that safety perception is not related to their gender,
age or location. Through a website created by us, two random
images from the image pool were presented side by side and
we asked ”Which place looks safer?”. The possible answers
were left, right or equal. A unique ID was attributed to
each participant by setting a cookie and recorded with each
comparison.

A total of 439 random people have participated in our
ongoing crowdsourced data collection so far, having generated
over 19k pairwise comparisons from November of 2018 until
May of 2019. This results in an average of 44 comparisons per
participant and about 25% of all comparisons were ties (which
will not be considered in this study). There were slightly
more left than right choices but both are fairly similar. Images
were compared, on average 7 times with some images being
compared as many as 19 times. Fig. 1 depicts the expected
long tail behavior of the number of comparisons by each user.
Most users concentrate on the < 20 comparisons group. We
have identified different patterns in users as some label image
pairs as ties much more often than others (some never do
while others have up to 70% of ties). Fig. 2 exemplifies how
preferences are distributed in a random group of users.

IV. AGREEMENT ASSESSMENT PROCEDURE

A. Semantic segmentation

We use the state-of-the-art Inplace-ABN
(DeepLab3+WideResNet38) semantic segmentation
implementation, trained on the Mapillary Vistas dataset
of street imagery [19], to segment each image from our
dataset into N = 52 semantic classes (this configuration
provides a mean IoU of 82%). Fig. 3 depicts two examples
of Google Street View images and the respective semantic
segmentation results. In Fig. 4 we can see how often each
class appeared on the comparisons. Classes like sky, building,

Fig. 1: Breakdown of participants by the number of compar-
isons they have provided. Most users provide less than 20
comparisons but there is still a significant number of users
that provide over 100 comparisons. This is a natural example
of a power law.

Fig. 2: The choices of the 20 most active users. Different
profiles can be found where some users answer equal much
more often than others. There are not significant left/right
biases among the 20 most active users.

Fig. 3: Example of the semantic segmentation of street imagery
rich in content including cars (dark blue), sidewalks (pink),
person (red), road (purple) poles (grey), street signs (yellow)
and lane markings (white). The segmentation procedure pro-
vides a mean IoU of 82%.
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Fig. 4: Ratio of images where each semantic class has been
detected. More than half of the classes appear in less than
10% of images. Sky and vegetation naturally appear in almost
every image.

vegetation, road and car are extremely common while rail
track and water are not very typical of street imagery.
Junction box and bus do not get detected very often in our
dataset because of their nature (there are not that many buses)
although they are more typical of an urban scene than of a
not urban scene. Using the segmentation, we derived a binary
representation x ∈ RN for every image where xn = 1 if
the semantic class i is present, and xn = 0 otherwise. We
empirically set a minimum of 1000 pixels (which is 0.5% of
the size of the image) from a semantic class to consider it
present in an image. We considered that instances smaller
than 1000 pixels were not noticed when comparing two
images.

Some classes were found to be redundant, as they are
very similar and would often be detected interchangeably (for
instance, there were no apparent differences between curb and
curb cut detections) and for that reason these were merged.
There were also some semantic classes that generated many
misclassifications and were for this reason discarded.

Each pairwise comparison is represented
by c = (xwinner, xloser), which is the Cartesian product
(or concatenation) between the semantic representations of
the winning and losing image, respectively. Each comparison
is, thus, represented in the nonnegative orthant of R2N .
Ties were discarded for this user study. Since all pairwise
comparisons have associated a user ID, for a user u, we
generated a descriptor c̃u of all comparisons, Cu, made by
this user

c̃u =
∑
c∈Cu

c. (1)

Since some users had made very few comparisons, their
votes were not considered faithful representatives of how the
user safety perception translates into the semantic classes.
Furthermore, since some semantic classes appear very rarely
on the compared images, whether they are found in winning
or losing images may provide inaccurate information as these

Fig. 5: Dendrogram of the agglomerative hierarchical cluster-
ing. Only 60 leaf nodes are shown (each is a cluster of one
or more different users). Due to complete linkage being used
no significant chaining effects are visible.

results may be biased by other semantic classes in the same
image or by the pairwise match. For these reasons, semantic
classes with less than 200 total appearances were ignored and
users with less than 10 comparisons were discarded. The final
number of users was 197 and of semantic classes was 27.

B. Clustering users

Using the chosen representation, we conducted an agglom-
erative hierarchical clustering with complete linkage among all
users where cosine distances were used. The cosine distance
metric captures profile similarities, regardless of the number
of times each user voted, which affects our representation and
should not be relevant for clustering. The farthest distances
to measure cluster proximity were chosen to avoid chaining,
which is typical of clustering by the shortest distance (es-
pecially if the data are not separable with clear gaps) and
thus fails to provide useful insights when searching for user
preferences. Using complete linkage generates more compact
clusters since it minimizes the largest distance within each
cluster, despite being more sensitive to outliers. Since we
already control for users with very few comparisons and
undesired semantic classes to remove outliers, using complete
linkage should provide satisfactory and meaningful results.

Fig. 5 shows the dendrogram of the agglomerative clustering
of our representations c̃u, as detailed in the previous Section.
We prune to 60 clusters, and so each leaf node may represent
one or more users. We cut the dendrogram into 6 clusters:
• Cluster 1 (light blue): 2 users with 22 comparisons;
• Cluster 2 (yellow): 13 users with 209 comparisons;
• Cluster 3 (purple): 6 users with 73 comparisons;
• Cluster 4 (dark blue): 169 users with 11812 comparisons;
• Cluster 5 (orange): 12 users with 192 comparisons;
• Cluster 6 (green): 6 users with 79 comparisons.

Clusters 1, 3 and 6 were not considered in the following
analysis for representing few users. We notice that cluster 4
features most of our dataset and includes all of the most active
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Fig. 6: How often each semantic class appears in winning
images while not appearing in the losing image. Classes are
ordered from the most common to the least common in our
dataset with the former being not very discriminative. In
general, all clusters follow a similar profile in which classes
appear more often on winning images only.

users, while the remaining clusters are small and of less active
users.

We treat the generated clusters as possessing all of the
comparisons made by the users that were grouped in it. Thus,
when picking a random comparison from our dataset, we can
analyze any event concerning the following random variables:

• S — semantic class;
• U — user (or cluster);
• W — winning image;
• L — losing image.

For instance, P (¬W,L, S = car|U = ui) describes the
proportion that for all comparisons of user ui, the class car
appears on the losing image but not on the winning image.
Such proportions are frequentist proxies to probabilities.

To analyze which features better separate group preferences,
we decided to focus on P (W,¬L|C,U), how often a se-
mantic class appears on the winning image but not on the
losing image for each cluster and for each semantic class,
and on P (¬W,L|C,U), if the class appears on the losing
image but not on the winning image. These proportions seek
to capture which classes are the most relevant for safety
perception by appearing mostly on the winning image only or
losing image only. When comparing the different clusters (in
Fig. 6 for P (W,¬L|C,U) and in Fig. 7 for P (¬W,L|C,U))
we can see that all clusters share a seemingly common profile.
There are, though, some notorious differences, for instance in
crosswalk for cluster 2, and at the least common classes for
both the smaller clusters, but in general we see that the same
classes have higher appearances on winning images (while not
being on the losing ones) for all clusters (and vice-versa).

Looking at the clustering results and their profiles, we
hypothesize that there might be a general agreement on
which semantic classes are perceived as safer for all clusters

Fig. 7: How often each semantic class appears in losing images
while not appearing in the winning image. In general, all
clusters follow a similar profile in which classes appear more
often on losing images only.

(making them, in fact, a single one) if all clusters had enough
comparisons.

C. Agreement hypothesis

Following our hypothesis, we used all of the comparisons
to create a general profile of safety perception c̃?, the centroid
of the overall dataset. Then, we took the most active member
from each cluster and measured its cosine distance to c̃? as
we consider a greater sample of comparisons. Fig. 8 shows
that all the users’ distance to the generic profile decreases
towards zero as a higher number of comparisons is considered
and at a similar rate, supporting our hypothesis. The multiple
clusters earlier defined are indeed groups of users who have
not provided enough comparisons for their profile to converge
to the general semantic description of perceived safety.

Finally, after establishing empirical evidence of inter-
observer agreement, we do a final exploration of the data to try
to understand which semantic classes appear more frequently
in winning and losing images. Fig. 9 shows that human-related
classes, like Pedestrian Area, Crosswalk and Person, are
found more frequently in winning images. Classes like Bridge,
Service Lane, Rail Track and Guard Rail are more common
in losing images while not being in winning images and are
more associated with motor vehicle presence. Fig. 9 also
evidences which classes appear frequently on both images.
Thus, such classes are not as relevant for safety perception (Sky
and Vegetation) as the others. This is a paramount conclusion
regarding how clean the data is, because images tend to be
mostly sky, for example, and the sky is not, in our results, a
confounding factor for perceived safety.

V. CONCLUSIONS

We presented an agreement analysis using image semantics
from pairwise comparisons. We showed that grouping users
according to their preferences leads to a seemingly common
semantic profile. When analyzing which semantic classes are
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Fig. 8: Evolution of the cosine distance between each user c̃u
and the general profile c̃? from all comparisons, when in-
creasing the number of comparisons considered. All clusters
approach the general profile as more comparisons are consid-
ered.

Fig. 9: How often semantic classes appear in the winning
image only (blue), the losing image only (orange) or both
(yellow). The most common classes also appear most of the
times on both images. Human-related classes are more typical
of winning images and vehicle-related classes are more typical
of losing images.

more common on both winning and losing images only, as
well as how often classes appear on both we reinforce our con-
clusion and observe that human-related semantic classes are
perceived as safer while vehicle-related classes are perceived
as less safe. We show how clustering is actually a result of
each cluster profile having not yet converged to the general
safety perception profile due to insufficient data from these
clusters. The City-SAFE dataset and source code can be found
in https://github.com/gabrielcosta1995/City-SAFE.
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