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Abstract—Genomic variations among a species consisting of
one nucleotide change are known as single nucleotide polymor-
phisms (SNPs). Often these mutations result in a change in
phenotype, but detecting higher order interaction of multiple
SNPs remains a challenging problem. Common approaches to
find groups of interacting SNPs associated with a phenotypic
response, a problem under the umbrella of epistasis, often suffers
from a combinatorial explosion and require Bonferroni or similar
corrections. In this work, we develop and apply a novel Fourier
transformation on the symmetric group to uncover higher order
interactions of SNPs associated with a quantitative phenotypic
response. We present results for simulated data and then apply
our method to previously published data to detect, for the first
time using a signal processing approach, new and statistically
significant higher order SNP interaction phenotypes related to
muscle mice genomic variants.

Index Terms—Spectral analysis, Fourier transform, algebraic
signal processing, epistasis, genomic variation

I. INTRODUCTION

Although advances in DNA sequencing technologies have
led to large sequencing studies [1]–[3], understanding how
genomic variation and interaction influence phenotypes re-
mains a challenging problem. This variation consists of a
single basepair change at the population level, known as single
nucleotide polymorphisms (SNPs), or rearrangements of larger
regions, termed structural variants (SVs) [4]–[6]. For SNPs,
these are often encoded measured with a binary response (0
or 1 copy of the variant) and either a quantitative or qualitative
phenotypic response (e.g. presence of a disease or hemoglobin
count) is recorded. For some genomic mutations, studies have
demonstrated how certain variants may contribute to cancer
susceptibility [7], [8]. At the same time, recent work has shown
how recent variation leads to increased fitness [9], [10].

Methods to detect SNPs have been well studied and over the
past several decades, thousands of SNPs have been associated
to diseases and other complex traits [11], [12]. Statistical

This work was supported by NSF Grant DMS-1659138, NSA Grant
H98230-18-1-0008, Sloan Grant G-2017-9876, and the Wicklow AI and
Medicine Research Initiative at the USF Data Institute

analysis typically looks for association between a phenotype
and a SNP taken individually via single-locus tests, though
geneticists admit this is an oversimplified approach to tackle
the complexity of underlying biological mechanisms [13].

Since one SNP rarely describes a quantitative pheno-
type completely, we consider the interaction between SNPs,
known as epistasis [11], [14], [15]. Figure 1 demonstrates
this phenomenon when only considering two variants at a
time. Unfortunately, effective epistasis detection gives rise
to significant analytical and computational challenges. Two
main challenges include: 1) the computational complexity of
exhaustive approaches to epistasis grows exponentially with
order of interactions and 2) many of the more traditional
statistical methods increase type I error associated with too
many hypothesis tests and require Bonferroni-like corrections
to partially address this issue [13].

In this paper, we propose an algebraic signal process-
ing method to detect epistasis by considering the Fourier
transform over the associated irreducible representations of
the symmetric group [16]. This method has more recently
been used in machine learning problems where symmetry
of the underlying data proves useful [17]–[19] as well in
ranking sports and social choice applications [20]–[23]. By
applying our method in genomic data, the resulting spectrum
yields precise insight into the higher order interaction and
their effect on response variables. Specifically the Fourier
transform takes the measured phenotypic response to a set
of candidate SNPs and orthogonally decomposes the response
into pure higher order interactions. This work addresses the
previous challenges by avoiding exhaustive searches and not
limiting higher order interactions to SNPs that are individually
statistically significant. In Section 2, we introduce our signal
processing approach for identifying potential higher order
interactions for a quantitative phenotype. For simplicity, we
develop our approach for both homozygous (2 copies of the
variant) and exclusive heterozygous (at least 1 copy of the
variant). In Section 3, we present the results of our method
on both simulated and real sequencing data from previously
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published mice data and reveal new interactions that influence
mice body weight and lean mass [24].

Fig. 1. Epistasis Example. Illustration of epistasis where mutations X and
Y , separately, result in an increased observed phenotype. Each subfigure
illustrates the observed quantitative phenotype when both X and Y are
present. In A) effects are purely additive, and is represented by the transparent
XY in subfigures B) effects > additive, C) effects < additive, and D) effects
are less than each individual mutation.

II. METHOD

The Fourier transform [25] is a popular signal processing
tool that takes in as input (usually noisy) data and projects the
data onto a new basis that often is far more clarifying of the
original form of the data. Classic examples of Fourier analysis
include transforming raw audio signal (as a time series) into
the frequency domain for easier analysis and classification.
Large amplitudes associated to certain frequencies characterize
the audio signal. In this case, the core assumption is that an
orthogonal basis of sin(t) and cos(t) provide useful insight
into the underlying signal. For our method, the orthogonal
basis functions are representations of the abelian cyclic group.
Therefore, the classic Fourier transform can be viewed as
projections of the data onto the associated irreducible repre-
sentations, which, in this abelian case, are all one dimensional
homogeneous spaces.

Our objective is to develop a Fourier transform that detects
the subsets (k) of interacting SNP mutations (n) that have a
positive phenotypic response. In our data set of study [24], the
response is on mice body weight. In general, we would like
to understand the phenotypic response to first order, second
order,..., up to ith order interactions between mutations. The
appropriate group structure to detect “subset” behavior is not
the cyclic group but instead the symmetric group Sn, which
is the group of permutations on a set of n elements. The
foundational development of computing Fourier transforms
with nonabelian group structure can be found in [16].

A. Vector Space Representation of the Mutation-Phenotype
Data

We begin by labeling each SNP from 1 to n. We define X
be the elements of the power set of n SNPs up to bn/2c. To
analyze samples where the subset of k SNPs are greater than
bn/2c, we separate, relabel and map back to a subset of n−k.

We now define the vector space of all functions, f ∈ M ,
from X to R. We index the basis elements of this vector
space in lexicographic order by size of subsets (i.e. the first(
n
1

)
elements of the vector f correspond to single subsets

{1}, {2}, . . . , {n} the next
(
n
2

)
elements of f correspond to

pair subsets {1, 2}{1, 3} . . . {n, n − 1}). The vector space
M will be essential to encode our data. Before introducing
the analogous orthogonal decomposition of M via a Fourier
transform, we look at an example that illustrates the data
encoding.

Let A,B,C,D be four identified SNPs, BW body weight
as the phenotypic response, then a data set of 10 samples can
be encoded as the matrix S,

S =



A B C D BW
1 0 0 0 196
0 0 1 0 248
0 1 0 1 169
0 1 1 0 124
0 0 0 1 78
1 0 0 1 158
0 0 0 1 119
0 1 1 0 189
0 0 0 1 172
0 1 1 0 161


,

where an entry of 1 indicates presence of a SNP at that
genomic locus. Thus, the individual in the first row has one
SNP (A) and a corresponding body weight of 196. We now
translate the rows of samples of S to our function space f ∈M
in this example. The mapping for S → f is completed by the
following:

1) If a specific mutation set is found once in S, then
it is simply added into its location in the vector f
lexicographically.

2) If more than 1 sample has the identical set of mutations,
we average all phenotypic responses for that set of
mutations.

3) If a specific subset of SNPs does not occur in the
samples, we impute with the mean of all samples.

The dimension of of M is 2n−1, so most subsets of SNPs
are not sampled in practice. We apply step 3) to account for
infrequent mutations that may appear to have a large positive
effect on body weight.

Thus, f has final form with imputed mean (175.3̄) as:
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f =



196
175.3̄
248

(78 + 119 + 172)/3
175.3̄
175.3̄
158

124 + 189 + 161)/3
169

175.3̄


=



196
175.3̄
248
123

175.3̄
175.3̄
158
158
169

175.3̄


f is then partitioned into smaller data vectors f (3,1) (the first
four entries of f ) and f (2,2) (the next six entries of f ). Each
smaller “k-partitioned” data vector now contains the body
weight for all mice with exactly 1 and 2 mutations respectively.

B. Orthogonal Decomposition of the Data, the Fourier trans-
form step

In order to study the ith order effects of k mutations
on the response variable, we have to further decompose
the data vectors, f ∈ M into linearly independent, irre-
ducible and interpretable vectors. We first note that M =
M (n,0)

⊕
M (n−1,1)

⊕
· · ·
⊕
M (n−k,k) decomposes naturally

into orthogonal homogeneous spaces with respect to Sn,
where M (n−k,k) is the

(
n
k

)
dimensional space containing the

data from samples with exactly k mutations [16]. We denote
f (n−k,k) as the part of the data vector f that lives in the
associated homogeneous space M (n−k,k).

The last step in this methodology is to project f (n−k,k) ∈
M (n−k,k) onto orthogonal, interpretable subspaces so that we
can observe the phenotypic response of the pure ith order
mutations for 0 ≤ i ≤ k. Observing that M (n−k,k) becomes a
CSn module [26] if we define the action of Sn on the basis of
M (n−k,k) in the usual way, [16], [26]. M (n−k,k) now admits
an irreducible orthogonal decomposition of the data space in
the form:

M (n−k,k) = M
(n−k,k)
0

⊕
M

(n−k,k)
1

⊕
· · ·
⊕

M
(n−k,k)
k ,

(1)
where M

(n−k,k)
i is an irreducible, orthogonal subspace cor-

responding to precisely the pure ith order interaction effects.
Taking f (n−k,k) and projecting them on to (1) is the Fourier
transform of our data against the symmetric group.

There are a number of techniques developed to compute
these transforms [27]–[31]. We follow [31] which exploits the
fact that the ith eigenspace of the adjacency matrix associated
to the Johnson Graph J(n, k) correspond precisely to the
irreducible orthogonal subspace M (n−k,k)

i . We then compute
these eigenspaces from J(n, k) and project f (n−k,k) onto (1)
directly.

For a data set with n = 15 candidate SNPs, the full
orthogonal decomposition is:

f (14,1) = f
(14,1)
0 + f

(14,1)
1

f (13,2) = f
(13,2)
0 + f

(13,2)
1 + f

(13,2)
2

f (12,3) = f
(12,3)
0 + f

(12,3)
1 + f

(12,3)
2 + f

(12,3)
3

f (11,4) = f
(11,4)
0 + f

(11,4)
1 + · · ·+ f

(11,4)
4

f (10,5) = f
(10,5)
0 + f

(10,5)
1 + · · ·+ f

(10,5)
5

f (9,6) = f
(9,6)
0 + f

(9,6)
1 + · · ·+ f

(9,6)
6 .

f (8,7) = f
(8,7)
0 + f

(8,7)
1 + · · ·+ f

(8,7)
7 .

For each f (15−k,k), f (15−k,k)
i is the vector whose entries

correspond to the pure ith order effect on the phenotypic
response that the samples with exactly k SNP mutations.

Note that the pure 0th order effect corresponds to the
average effect that the k-groupings of mutations have on the
quantitative response. We also note that, as expected with
a Fourier transform, we can reconstruct the original signal
f (15−k,k) as the sum of all the orthogonal projections.

To analyze f
(n,k)
i for insight into which set of mutations

had significant effects, we apply Mallow’s method [16], which
creates a lower dimensional, interpretable Mallow vector,
f̃
(n,k)
i . Each entry of the Mallow vector, f̃ (n,k)i , contains the

inner products of f (n,k)i with indicator functions of all the ith

subsets, in lexicographic order. Mallow’s method allows for
simple interpretation of f (n,k)i as will be seen in the results
section. A large positive value in a Mallow vector means
that the corresponding coalition has a relatively high positive
effect on the phenotype while a large negative value implies a
relatively large negative effect. Values closer to 0 could mean
that those specific coalitions have little effect on the response.

III. RESULTS

We implemented our method in Python and analyze the
method’s detection of genotype coalitions affecting observable
phenotype on both simulated and real mice data from a
previous study [24]. For both data sets, we compare predicted
coalitions to known SNPs affecting the phenotypic response.
In the case for the Karst mice data, we present results detecting
new groups of SNPs that lead to a statistically significant
increase in phenotype.

A. Simulated Data

To test our method, we simulated 1000 realizations of 400
individuals with 15 SNPs. Each individual had exactly 6 vari-
ants with equal probability of each variant, and a quantitative
phenotype response drawn from N (µ = 0, σ = 0.25). Out of
these variants, we chose the coalitions {(B,D), (C,E,H)}
to lead to an increased response of N (µ = 2, σ = 0.25)
and N (µ = 1, σ = 0.25), respectively. The presence of
the A variant resulted in a decrease in the response by
N (µ = −2, σ = 0.25).

When we apply our method to first through third-order
interactions, we consider up to

(
15
3

)
= 455 interactions of

groups of SNPs. After applying Mallow’s method, we report
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the top highest three and lowest three frequencies, correspond-
ing to groupings of 1, 2, and 3 SNPs. Figures 2 and 3 show a
sample single realization of the second order and third order
effects in the simulated data and we correctly identify the
highest frequency spike to be BD and CEH , respectively.
Furthermore, we observe similar results for A with a negative
spike in the spectrum. As we expect, averaging over the 1000
realizations, only the groupings BD and CEH are the only
groups that result in statistically significant peaks contributing
to an increase in the phenotype.

0 20 40 60 80 100
Mutation Coalitions in Lexicographical Order

101

100

0

100

101

Fr
eq

ue
nc

y

Mutation Presence Reduction Data Vectors 
 2° Order Effects Within Groupings of 6 Mutations

 Coalitions 
 Highest 3 
 Lowest 3

B, D
A, G
C, H
A, B
H, M
D, G

Fig. 2. Second order spectrum. Illustration of Mallow vector f̃
(9,6)
2 in

one simulated data set. We report the highest and lowest three groupings of
pairs of SNPs and correctly identify the pair BD as the strongest positively
affecting phenotype.

Fig. 3. Third order spectrum. Illustration of Mallow vector f̃
(9,6)
3 in one

simulated data set. We report highest and lowest three groupings of 3 SNPs
and correctly identify the CEH as positively affecting phenotype.

B. Karst Mice Data

We next apply our method to previously published mice
data [24]. In this study, Karst et al. provided a candidate set of
SNPs related to muscle mice in the intercrossed G3 population.
Siblings from the reciprocal cross generations interbred F1

and F2 populations were randomly mated to produce the G3

population of mice [32]. These SNPs (in Chromosome 1), our
labels, and their corresponding markers are summarized in
Table I. For our analysis, we focus on all the candidate SNPs
in Chromosome 1. Since mice can have 0, 1, or 2 copies of a
SNP, we apply our method – which encodes the presence of a
genomic variant – in two ways: 1) the exclusive heterozygous

approach (i.e., if there is at least one SNP present) and 2) the
homozygous (i.e., there are two copies of the variation present).
For our analysis, we separated the data by sex and used both
approaches for each data set. We refer to interacting SNPs as
coalitions.

Applying the Fourier transform to exclusive heterozygous
data set, our method detected several higher order coalitions
that contributed to higher body weight and lean mass in female
mice. For example, the coalition of SNPs ABL consistently
positively contributed to increased lean mass. However, we
note that having only at least one copy of the SNP does
not yield statistically different means in phenotypes. Karst
identified both A and B (on Chromosome 1) to have an
individually statistically significant positive contribution to
body weight and lean mass. For the heterozygous approach,
we note that a simple two-sided difference of means t-test does
not result in the same statistical significance as in [24], but our
method still recovered these SNP interactions.

When we applied the Fourier transform to homozygous
data set, several higher order coalitions were detected that
significantly contributed to higher body weight and lean mass
in male and female mice. We summarize these results in Table
II with a two-sided difference of means t-test. In Figure 4,
we plot both the male and female body weight and highlight
the mice with the interacting variants detected by our model.
For body weight, coalitions ABM for males and ABDE for
females were particularly significant with p = 0.0017 and
p = 0.0303 respectively. As such, we independently find the
SNPs previously correlated with these increased phenotypes,
but also uncover that although A and B both contribute to
higher lean mass and body weight, the additional presence of
SNPs (e.g., E, N , M ) lead to more statistically significant
results. Thus, our model is able to detect the effects of the
individual mutations as stated in [24], as well as discover
previously undetected higher order mutation interactions con-
tributing to these phenotypes.

TABLE I
CANDIDATE SNPS (AND ALPHABETICAL LABELS) IN CHROMOSOME 1a

Label SNP Label SNP Label SNP
A rs31194300 F rs31684041 K rs3672697
B rs4222269 G rs31234127 L rs31424068
C rs4222320 H rs31791013 M rs32257630
D rs31991963 I rs32520046 N rs31474366
E rs31886089 J rs4222579 O rs4222922

aSubset of data from [24].

IV. CONCLUSION

We propose a novel method to detect higher order in-
teractions between single nucleotide polymorphisms (SNPs)
associated with a phenotypic response from a candidate set
of variants. Our method orthogonally decomposes mutation-
phenotype data to interpretable ith order interactions of coali-
tions of SNPs. We present results on both simulated and real
data, verifying previous results, and our method uncovers new
statistically significant groupings of SNPs related to pheno-
typic responses. In future studies, we intend to incorporate
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TABLE II
HOMOZYGOUS COALITIONS FOR BODY WEIGHT AND LEAN MASS

Coalition p-value Sex
Body Weight Lean Mass

AB 0.0315 0.0277 Male
AC 0.0305 0.0354 Male

ABM 0.0017 0.0041 Male
ABN 0.0011 0.0011 Male
BDE 0.0439 0.1651 Female
ABDE 0.0303 0.1711 Female
ACDE 0.0505 0.2367 Female
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Fig. 4. G3 mice population with log(body weight) plotted. Top. Male mice
with coalition ABM are highlighted in red. Bottom. Female mice with
coalition ABDE are plotted in purple. In both, these groupings of SNPs lead
to a statistically significant difference from the population’s body weight.

additional comparisons with existing methods and include
larger data sets from a variety of organisms and phenotypes.
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