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Abstract—Segmentation of piecewise Auto-Regressive eXoge-
nous (ARX) processes has been a major challenge in time-
series segmentation and change detection. In this paper, for
piecewise ARX process segmentation, we exploit hidden sparsity
in tight-dimensional representation spaces. More precisely, we
strategically design a tight-dimensional linear transformation
which reveals sparsity hidden in samples following piecewise
ARX processes. Experiments on synthetic and real-world data
demonstrate the effectiveness of the proposed method.

Index Terms—Time-series segmentation, change detection,
piecewise ARX process, sparse representation.

I. INTRODUCTION

Segmentation of piecewise Auto-Regressive eXogenous
(ARX) processes has been a challenging task in, e.g., seg-
mentation of piecewise stationary time-series such as speech
[1]-[3], video [4], [5] and EEG signals [6], [7], and change
detection in production plants [8], [9]. More precisely, we
consider that y, € R the observed signal at time instant
n € {1,...,N} is obtained from a piecewise ARX process:

Yn =€ 9 +en (N, <n<nj), (1)

for{ =1,...,L+1 where n] <---< nj are unknown change
points,' 9%,..., 97, consist of unknown coefficients in each
time-segment, &, = (Yn—1,- -+ Yn—qus Tn—1y---»Tn—gy) €
RE (K := ¢ + ¢o) consists of Yn—1,--+>Yn—gq, the past
observations and z,_1,...,Z,—q, the known input signals,
and ¢, includes the observation noise and the modeling error.
A major goal of piecewise ARX process segmentation is to
find ny,...,n5 € {1,...,N} from (&,,y,)Y_;.2

The difficulty in estimation of nj,...,n} is clearly un-
derstood, e.g., from the fact that searching optimal estimates
results in a certain combinatorial problem. Although dynamic
programming based approaches [10], [11] are developed spe-
cially for the model in (1), these approaches are computation-
ally intractable in practical situations as stated in, e.g., [3].

To avoid such difficulty, the approaches in [3], [5], [12],
[13] cleverly reduce estimation of nj,...,n} to sparse op-
timizations after expressing discrete samples in (1) in K N-
dimensional redundant representation spaces. Meanwhile, for
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IFor convenience, we let ng =0 and n} 1= N.

20nce nj,...,n} are estimated, the estimation of 97, ...

,192_‘_1 reduces
to estimation of ARX process in each time-segment.

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

recovery of certain piecewise continuous signals, similar re-
dundant representations are also introduced, e.g., in [14]-[16].
Namely, to use the sparsity, the approaches in [14]-[16] as well
as [3], [5], [12], [13] rely on redundant representation spaces
whose dimensions are several times larger than the number of
samples.

In our recent work [17], for piecewise continuous signal
recovery, we reveal hidden sparsity in a tight-dimensional
representation space which stands for the representation space
whose dimension does not exceed the number of samples.
It is demonstrated in [17] that the sparsity revealed in the
tight-dimensional representation space yields more accurate
estimation than that in the redundant representation space.

The first contribution of this paper is to clarify that the
strategy in [17] proposed for piecewise continuous signal
recovery is in fact applicable for piecewise ARX process
segmentation thanks to similarity of problem settings.

The second contribution is to demonstrate the effectiveness
of the proposed method for piecewise ARX process segmen-
tation through experiments on synthetic and real-world data.
These experiments are presented to show advantages of the
proposed method against the method based on the redundant
representation introduced in [3], [S], [12], [13]. First, by
using a synthetic example exactly following (1), we show that
there exists a case where the redundant representation-based
method fails to detect change points even for small enough
noise. Meanwhile, the proposed method correctly detects
change points for small to moderate levels of noise. Next,
for speech segmentation, we demonstrate that the proposed
method yields significant performance improvements. Namely,
the proposed method detects several change points which seem
to reasonably reflect phoneme boundaries of speech, while
the redundant representation-based method results in providing
inadequate information for speech segmentation.

Notations: N and R denote the sets of all nonnegative
integers and all real numbers respectively. For matrices or
vectors, we denote the transpose by (:)". For z € RY and
X € RV*M [g], and [X],, . respectively denote the n-th
component of & and the (n, m) entry of X . We define the sup-
port of © € RY by supp(z) := {n € {1,...,N}|[x], # 0}.
The Euclidean norm and the /;-norm of & € RV are respec-
tively denoted by ||z| := V& Tz and ||z, := 25:1 |[]n].
We define the range and the null spaces of X € RN*M
respectively by R(X) = {Xu € RY|u € RM} and
N(X) = {ueRM| Xu =0}
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II. REVEALING SPARSITY FOR PIECEWISE ARX
PROCESSES

We show a strategic design of the matrix W € RV —FK)xN
which makes W s* sparse for noiseless samples

st = (yl—El,...,yN—€N)TERN

in the range space R(W). Since the dimension of R(W) is
smaller than N the number of samples, we call R(W) the
tight-dimensional space. We exploit the fact that the condition

(el L+1}) {n..,n+KYC (mi_y,mi] )

holds true except for consecutive n’s around nj,...,n}. The
condition (2) implies the equation
([ s [8" s i) T = @005, 3)
where
£T
P, = € REFDXE, 4)
;
n+K

Since the equation (3) is similar to that utilized in [17] to reveal
sparsity for piecewise continuous signals (see Appendix), we
can construct W as shown in the following theorem.

Theorem 1 (Support of Ws*). Let w, € N (®,])\{0} (n =
1,....,N = K) for ®, in (4). For eachn =1,...,N — K,
construct n-th row of the matrix W € RIN—FK)XN py,

(Wlnty--os Wlan) == (0,...,0,w,},0,...,0). (5)
N—— ——

n—1 N—-n—K
Then, the support of W s* is covered as
L
supp(Ws*) c{1,...,N—=K}n | J{nj - K+1,...,n}}.
=1

(6)
Remark 1 (Sparsity of W s*). The inclusion (6) implies that
Ws* € RV—X has at most X L nonzero components. Thus,
under the condition KL < N (i.e. the number of samples is
sufficiently many), W s* is sparse.

III. PIECEWISE ARX PROCESS SEGMENTATION BY
EXPLOITING REVEALED SPARSITY

The proposed segmentation method first obtains § ~ s*,
and then 71,...,7; ~ ni,...,n}. This method is derived
based on the algorithm in our previous work [17] for piecewise
continuous signal recovery.

A. Support Estimation by Promoting Sparsity

To estimate s* or supp(W s*), motivated by extensive
studies on sparse vector estimation in, e.g., [18]-[23], we here
present a simple ¢; regularized formulation:

N

s§=argmin » (y, — [s]n)? + A|Ws]|: )

seRN ot
where ||[Ws|; promotes the sparsity of W's, the standard
square error Zﬁ;l(yn — [8]n)? is chosen as a data-fidelity

term for simplicity, and A > 0 is the regularization parameter.

B. Estimation of Change Points
By leveraging Theorem 1 which shows that the locations of

change points nj,...,n} affects supp(W's*), we obtain the
proposed estimates 71, ...,7; via the following problem.

Problem 1 (Estimation of change points n7,...,n7).  For
$ € RY, find L € N smallest as possible and (1, ...7;) €
{1,...,N — K}’i which satisfy
L
supp(Ws) C U{ﬁg —K+1,...,7},
=1
ly <flg <o < Nj.

®)

Since Ws is given at this step, it is easy to compute a
solution of Problem 1, e.g., by the following greedy algorithm.
Note that the solution of Problem 1 is unique under the same
conditions assumed in Theorem 2 below.

Algorithm 1 (Computation of a Solution of Problem 1). A
solution of Problem 1 can be computed by

n; =max{n € {1,...,N — K} |[W3], # 0},
nj;_, =max{n € {1,...,n; — K}|[[W§], # 0},

71 = max{n € {1,...,ns — K} | [W§],, # 0},

where L is defined so that {n € {1,...,71 — K} |[W§], #
0} =2.

We show the estimation accuracy of 71, ..., 7; for the case
supp(W §) = supp(Ws*). Since the estimation accuracy de-
pends on the solution of Problem 1 which is not always unique,
for simplicity, we assume conditions for its uniqueness:

i) At least K sample indexes are contained in every time-

segment: (n);_,,n;] ({ =2,...,L), (0,n%] and (n}, N].

i) Ws*],; #0 and [Ws*],: g1 #0 ((=1,...,L).
The condition (i) likely holds if N is sufficiently many. The
condition (ii) also likely holds because [s*],,...,[$*]n+K
sampled from multiple time-segments mostly violates the
condition (10) shown in Appendix.

Theorem 2 (Accuracy of change point estimation). Suppose
supp(W'8) = supp(W s*). Then, under the conditions (i) and
(ii) above, the solution of Problem 1 is unique and satisfies

L=1L,

ne=mn;, (£=1,...,L).

In particular, Theorem 2 suggests that the estimation of
supp(W s*) is the key step for estimation of nj,...,n%.
Remark 2 (Computational costs of proposed method). The
proposed method can be divided into the following three steps:

1. Construct W as shown in Theorem 1.

2. Obtain § by the convex optimization shown in (7).

3. Obtain 71, ...,7; from § by Algorithm 1.
Computation needed for step 1 is to find w,, € N'(®])\{0}
for each n = 1,..., N — K. This computational cost is low
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because <I>7TL is a K by K + 1 matrix, and K is at most
tens in practice (see, e.g., [1]-[9]). Step 2 requires to solve
a nonsmooth convex optimization problem, but many efficient
solvers are available, e.g., [24]-[27]. For instance, with the first
order methods [24], [25], we can implement an iterative solver
for (7) which needs only O(K N) arithmetic operations per
iteration because W has at most K + 1 nonzero entries in each
row (see (5)). Finally, computational cost for step 3 is very low
because this step simply searches nonzero components of W's.

IV. COMPARISON WITH SEGMENTATION METHODS USING
SPARSITY IN REDUNDANT REPRESENTATION SPACES

The approaches in [3], [S], [12], [13] introduce redundant
representations ,31, ey ,éN € RX which are trained so that
[s*], ~ &8, (n = 1,...,N). In this redundant represen-
tation, it is expected that Bn and Bn+1 can be same for
reproducing [s*], and [s*],41. Based on this observation,

B1,...,BN are obtained, e.g., by solving
N

N—-1
min Z(yn_ér—[/@n)Q"_ﬁZ||/8n_/3n+1H7 (9)
n=1 n=1

which we call modified-Total-Variation (TV) formulation,
where k > 0 is the regularization parameter. Modified-TV
aims to promote sparsity of (3,, — ﬂn“)ﬁ’:—f the K (N —1)-
dimensional vector. From ,31,...,BN the solution of (9),
change points are estimated by finding n € {1,...,N — 1}
such that ||3,, — Bn+1]| > 0.

Meanwhile, the proposed approach reveals sparsity hidden
in s* in the tight-dimensional range space R(W') whose
dimension does not exceed N. Compared with modified-
TV, the tight-dimensionality of the proposed approach is a
great advantage for computation (see Remark 3 below). In
addition, it is hypothesized that the superior performances of
the proposed method for numerical examples shown in Sect. V
is thanks to the tight-dimensionality.

Remark 3 (Comparison of computational costs). In both
the proposed method and modified-TV, computational costs
are dominated by convex optimization problems respectively
shown in (7) and (9). The tight-dimensionality of the proposed
approach yields that the number of variables to be optimized
in the proposed formulation (7) is K times less than that of
(9). Thus, although computation time depends on a employed
solver, the proposed formulation (7) is expected to be solved
faster than (9).

V. NUMERICAL EXPERIMENTS

To show the effectiveness of the proposed method, we
present experiments on segmentation of synthetic and real-
world data. The proposed method first estimates s* by (7),
and then estimates f,...,7; by Algorithm 1. Note that,
for construction of W shown in Theorem 1, there exists an
arbitrariness of scalar multiplication in w, € N(®,)\{0}.
As a typical example, we here use w, of unit Euclidean
norm |lw,|| = 1 (n = 1,...,N — K). We compare the
proposed method against modified-TV formulation, shown in

—E— Proposed
~ —E— modified-TV
BN
|
xs
£
— = = £]
34

© 4 © 4 S 4 9}
10°! 102 107 10 107 10
Noise Variance

Fig. 1: Comparison of the proposed method and modified-TV for segmentation
of synthetic data where results are averaged over 100 realizations of white
Gaussian noise for each noise variance.

(9), promoting the sparsity in the redundant representation
space introduced in [3], [5], [12], [13].

A. Synthetic Example

In (1), we set &, = (Yn—1,--+,Yn—a,Tn_1) , nf = 40,
ny = 70, 9% = (3.0797, —4.2766,3.0012, —0.9475,0.1) T,
95 = (2.6916, —3.6977,2.6235,—0.9477, 0.1)7, 95 =
(2.8945, —3.9908, 2.8210, —0.9476,0.1)T with N = 100.
The results are averaged for 100 realizations of the white
Gaussian noise (£,,)_,, while the input signals (z,,)" - are
fixed to values drawn from i.i.d. Gaussian distribution A/ (0, 1).

To simply measure the difference between f1,...7; and
ny,...,nJ, it is convenient to make L = L. Thus, we here
modify Problem 1 by approximating the relation (8) with
(fa,...01) € {1,...,N — K}¥ chosen by

>

ngUsq {he—K+1,... 7.}

~ min_ [[W 8],

ny<---<nr
Note that, since § is given at this step, this minimization
can be easily done in a greedy way. Then, we measure
the error by 4, |nj — f|. Similar modification is also
performed for (||3, — Bn1]|)Y=! obtained by modified-TV
(9). Note that regularization parameters respectively in the
proposed formulation and modified-TV are chosen so that the
performances become best. Fig. 1 shows that there exists a case
where modified-TV fails to detect change points even if noise
is small enough. Meanwhile, the proposed method precisely
estimates change point locations for small to moderate levels
of noise.

B. Speech Segmentation

As an instance of real-world data, we show experiments
on phonetic segmentation of English male and female speech
respectively pronouncing /semm/ and /klaud/. Data are taken
from [28] with the 8kHz sampling rate. According to the
setting in [3], we here adopt the piecewise AR model of
order 8, i.e., £, = (Yn_1,.-,Yn_g) ' . As shown in Fig. 2(c),
modified-TV detects too many change point locations (Note:
nonzero components in Fig. 2(c) indicate the change point
locations), i.e., provides inadequate information for speech
segmentation. This is caused by the situation that ﬁl, ceey ﬁ N
obtained by modified-TV gradually change (see Fig. 2(d)),
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Fig. 2: Comparison of the proposed method and modified-TV for segmentation
of English male speech where phoneme boundaries between /s/, /e/, /1/, and
/m/ would be around 1050, 1600, and 2000 samples.

contrary to the intension of modified-TV (see Sect. IV).
This issue is not resolved by increasing « the regularization
parameter (see Fig. 2(e)). Similar tendencies are also observed
in Fig. 3(c)(d)(e). Meanwhile, as shown in Fig. 2(a)(b) and
Fig. 3(a)(b), the proposed method detects several change
point locations. From inspection of the speech, detections
by the proposed method seem to reasonably reflect phoneme
boundaries. For the speech /semm/, detections by the proposed
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Fig. 3: Comparison of the proposed method and modified-TV for segmentation
of English female speech where phoneme boundaries between /k/, /1/, /au/,
and /d/ would be around 550, 900, and 2400 samples.

method adequately matches phoneme boundaries except that
several changes are detected in /s/. We observe that the
first and latter parts of /s/ have rather different acoustical
properties, and thus detections by the proposed method would
be reasonable in terms of acoustical changes in speech. For
segmentation of the speech /klaud/ which is more challenging
due to diphthong /au/, the proposed method performs fairly
well, though the detected boundary between /k/ and /1/ is
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slightly different from the true one, and several changes are
detected in /au/.

VI. CONCLUSION

For segmentation of the piecewise ARX process shown
in (1), in the tight-dimensional representation spaces, we
presented an idea to exploit sparsity hidden in s* consisting of
samples following the piecewise ARX process. More precisely,
by exploiting the fact that (2) is expected to hold for most of
n e {l,...,N — K}, we design the linear transformation W
which makes W s* sparse in the tight-dimensional range space
R(W) whose dimension is smaller than the number of sam-
ples. We also show how the revealed sparsity can be exploited
for piecewise ARX process segmentation. Numerical examples
demonstrate the effectiveness of the proposed method.

APPENDIX
ESSENCE TO REVEAL SPARSITY IN TIGHT-DIMENSIONAL
REPRESENTATION SPACES

In our previous work [17], we reveal sparsity in tight-
dimensional spaces for certain piecewise continuous signals
where the equation similar to (3) is utilized. We explain the
idea in [17] for the setting in this paper. First, the equation
(3) implies the inclusion

(18" Tns -+ [8" ]t i) T € R(®) = N(@,)",  (10)

where N(®,))+ is the orthogonal complement of N(®).
The inclusion (10) is equivalent to

w' ([8n, ..., [8 ]nsx) T =0 (Yu e N(®))).
Suppose the technical assumption:

Assumption 1. For every n € {1,...,N — K}, the matrix
®,, in (4) is full-column rank, i.e., N(®) is I-dimensional.

This assumption holds almost surely, roughly speaking, if
input signals (mn)ﬁ;f_qz and noises (,)N_; in (1) are in-
dependently drawn from continuous probability distributions.
Then, we deduce that, for any w,, € N'(®,)\{0},

([8*]n, - - -, [8*]n+K) satisfies Condition (10) 1
s w,! ([8*]n, ., [*]nsx) | =0. (11)

Note that “=-"in (11) holds true without Assumption 1. From
this relation and the simple observation shown in (2), for W
constructed by (5) in Theorem 1, [W s*],, # 0 happens only in
consecutive n’s around nj,...,n}. This implies that sparsity
is revealed in the range space R(W). This fact is more
precisely expressed in Theorem 1 and Remark 1. We say that
R(W) is the tight-dimensional space because the dimension
of R(W') does not exceed N the number of samples.
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