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Abstract—In this paper, we propose an adaptive host-chip
system for video acquisition constrained under a given bit rate
to optimize object tracking performance. The chip is an imaging
instrument with limited computational power consisting of a
very high-resolution focal plane array (FPA) that transmits
quadtree (QT)-segmented video frames to the host. The host has
unlimited computational power for video analysis. We find the
optimal QT decomposition to minimize a weighted rate distortion
equation using the Viterbi algorithm. The weights are user-
defined based on the class of objects to track. Faster R-CNN
and a Kalman filter are used to detect and track the objects of
interest respectively. We evaluate our architecture’s performance
based on the Multiple Object Tracking Accuracy (MOTA).

Index Terms—host-chip architecture, Viterbi algorithm, opti-
mal bit allocation, rate distortion, object tracking

I. INTRODUCTION

In this work, we focus on the problem of optimal infor-
mation extraction in wide-area surveillance imaging applica-
tions using high resolution sensors. We assume an imaging
instrument of limited computational power consisting of a
Focal Plane Array (FPA). The FPA provides fixed or moving
viewpoint imagery over the desired field of view. The goal is
to autonomously acquire the scene so that the spatio-temporal
information is preserved for detection and tracking of objects
of interest. This analysis is done on a separate host device
with unlimited computational resources. The first challenge is
that the bandwidth of the Readout Integrated Circuit (ROIC)
limits the maximum number of bits/s that may be delivered
from the sensor to the host. Hence, the problem bears close
similarity to resource allocation problems faced in image/video
compression and transmission literature [1], [2], [3]. The
second challenge is to perform object tracking on the distorted
video sequence due to the limited bandwidth. This makes
tracking more challenging than when a frame is analyzed in
its original state.

In today’s commercial FPA technology, a variety of controls
over the spatio-temporal sampling properties of the sensor is
available. Pixel-binning and sub-sampling modes allow for a
dynamic tradeoff between spatial and temporal resolutions.
High frame rates (e.g. > 1 kfps) may be achieved at low
resolution (e.g. < VGA), while maximum frame rates that
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can be achieved for high resolution FPAs (e.g. > 10 MPix) are
typically low (< 60 Hz). These pixel readout modes provide
a way to optimize sampling performance given constraints on
the maximum pixel bandwidth of the ROIC electronics [4],
[5], [6], [7], [8], [9].

Adaptivity during acquisition has been introduced in dif-
ferent ways. For instance, local features are extracted in the
measurement domain, such as standard deviation [10], [11],
edge counting [12] or estimation of the reconstruction error
[13], so as to guide the adaptive acquisition. Similarly, an
adaptive scheme is proposed in [14] by estimation of the com-
pressibility based on the local redundancy which is measured
statistically utilizing previously sensed measurements. These
measurement domain based recovery algorithms can benefit
from on-the-fly adaptive sampling as they do not require a
feedback channel from the receiver side but are often not so
accurate in the reconstruction.

Object detection and tracking is a difficult problem that
has been addressed by many researchers, more recently by
using neural networks to perform the task. Howard et al. [15]
proposed a lightweight object detector designed for resource-
constrained mobile platforms. R-FCN [16] using region based,
fully convolutional neural network based on ResNets [17] as
backbone has also been proposed. Tubelets [18] were designed
using a convolutional neural network (CNN) to perform both
object detection and tracking given a video sequence in full.
Many online trackers build appearance models of either the
individual objects themselves [19] or through a global model
[20]. These networks were essentially trained with actual data
and not on distorted data.

To the best of the authors’ knowledge, no previous work has
addressed the adaptive sampling of the spatio-temporal volume
at once along with the reconstruction algorithms designed
for object tracking. Our approach, therefore, is the first to
extend existing results in adaptive sensing and consider a
comprehensive approach to the flexible asynchronous space-
time image acquisition problem. Our assessment goal for this
algorithm is not the traditional reconstructed image quality
(e.g., PSNR, SSIM), but rather the tracking performance of
objects of interest.

This paper is organized as follows: in Section II, we
formulate the problem. Section III describes our architecture
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for tracking. Section IV describes our experimental results and
Section V concludes the paper.

II. PROBLEM FORMULATION

The proposed work focuses on developing a methodology
for adaptive guidance of a sensor through real-time tuning
of sensor control parameters to collect data with the highest
content of useful information for object tracking. It is based
on a computational imaging approach using a prediction-
correction paradigm. The goal is to use the host for predicting
an optimal sampling pattern on the chip and correcting that
predicted sampling strategy. The host computer helps guide
the sampling strategy for the chip, consisting of the FPA and
ROIC, so that the host can optimally perform object tracking
with its unlimited computational power.

The proposed architecture will allow dynamic, reconfig-
urable, and content-adaptive sensing of spatio-temporal in-
formation with optimal bandwidth utilization. We pose the
optimization problem as a resource allocation problem: given
the constraint on the allowable data bandwidth connecting the
sensor and the host computer, we estimate the best possible
tessellation per frame. This reduces the number of bits required
to represent a frame. The communication channel between the
host and chip can best utilize the bandwidth by only sending
important information.

The adaptive segmentation of the video frame is data-driven
based on a quadtree (QT) structure. The chip designs a QT
structure that subdivides the current frame into superpixels be-
fore transmitting it to the host. Superpixels with high distortion
may only be subdivided based on the available bandwidth. If
there is available bandwidth, the QT may further divide to
capture finer details in a video frame. QTs for newly acquired
frames on the chip contain information about the superpixels
the host should update or ignore (skip) in its frame of the
previous time step. The superpixel intensities for the update
regions are sent to the host. Skipped superpixels assume the
previous value. The QT is designed based on: (i) the distortion
between the current frame and the previous reconstructed
frame, and (ii) the predicted locations of the objects of interest
for the current frame. A fast and effective recursive encoding
of the QT structure is developed in [21].

III. HOST-CHIP ARCHITECTURE

The host-chip architecture shown in Fig. 1 and Fig. 2,
respectively, works as a prediction–correction model. This
architecture was designed keeping in mind the limited compu-
tational resources on the chip and high computational power
on the host. The host predicts the location of the Regions of
Interest (ROIs) for frame ft+1. Based on the next frame QT
sent from the chip, the host then corrects those predictions. To
best track the ROIs under the bandwidth constraint between
the host and the chip, B, the reconstructed image on the host
has higher resolution for the ROIs and poorer resolution for
the rest of the frame.

For a QT acquisition of frame ft on the chip, St, we have
a skip-acquire mode for the leaves of the QT, Qt, and pixel

values Vt for the leaves of acquire modes. These are sent from
the chip to the host to create the reconstructed frame f̂t. Values
in skip leaves are copied from the previously reconstructed
frame f̂t−1 available on the host. Using an object detector,
the host then determines the ROIs of the reconstructed image
f̂t. The ROIs are fed into an object tracker which predicts the
next ROIs for frame ft+1, denoted as b̃bt+1. The predicted
ROIs for frame ft+1 are sent to the chip.

Figure 1: Computation on Host

Figure 2: Computation on Chip

The chip receives b̃bt+1 and possesses f̂t. The full resolution
frame ft+1 is acquired at time t + 1 from the FPA. The
QT structure for f̂t+1 is found using a Viterbi optimization,
described in Subsection A. The Viterbi algorithm provides the
optimal St+1 and Qt+1 subject to the bandwidth constraint
B. This information, along with corresponding pixel values
Vt+1, are sent to the host in order to reconstruct and analyze
the frame f̂t+1.

A. Viterbi Optimization

The goal of the optimization is to have a trade-off between
the frame rate and frame distortion by minimizing the frame
distortion D over the leaves of the QT x subject to a given
maximum frame rate Rmax. In previous works [21], [22], [23],
the Viterbi Optimization has been used for compression with
the actual frames. However, in this work, while computing
frame distortion and rate, the reconstructed frame f̂t is taken
as an input along with the actual frame ft+1 acquired by the
FPA and the ROIs predicted in frame t + 1 by the Kalman
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Tracker. The Viterbi algorithm is used to estimate the optimal
f̂t+1 for object tracking purposes.

The optimization is formulated in the following way as
shown in Eqn. 1:

arg min
x

D(x), (1)

s. t. R(x∗) ≤ Rmax.

The distortion for each node of the QT is based on the
acquisition mode Qt of that node. If the node x̂t at particular
reconstructed frame at time t is skip, the distortion with respect
to the new node at time t+ 1, xt+1 is given in Eqn. 2:

Ds = |xt+1 − x̂t|. (2)

On the other hand, if the tree node is acquire, the distortion
is proportional to the standard deviation σ. This is shown in
Eqn. 3, where N is the maximum depth of the QT and n is
the level of the QT where distortion is computed. The root is
defined to be on level 0, and the most subdivided level as N :

Da = σ × 4N−n. (3)

The total distortion is therefore defined as

D = Ds +Da. (4)

The constrained discrete optimization of Eqn. 1 is solved
using Lagrangian relaxation, leading to solutions in the convex
hull of the rate-distortion curve [22]. The Lagrangian cost
function is of the form

Jλ(x) = D(x) + λR(x) (5)

where λ ≥ 0 is a Lagrangian multiplier. It has been shown
that if there is a λ∗ such that

x∗ = arg min
x

Jλ∗(x) (6)

which leads to R(x∗) = Rmax, then x∗ is the optimal solution
to Eq. 1. This is solved using the Viterbi algorithm, shown in
detail in [21]. However, we want to prioritize the regions based
on the bounding boxes, which are the ROIs. The following cost
function is a modification of Eqn. 5:

Jλ(x) =
∑
i∈Ω

wiDi(xi) + λR(x) (7)

where, Ω: set of differently weighted regions. Di: distortion
of region i. wi: weights of region i.

The bit rate in each frame can be fixed at a desired bit rate
within a certain tolerance. This is done by adjusting λ in the
Lagrangian multiplier method. This optimal λ∗ is arrived at
using a convex search based on a Bezier curve [22], which
accelerates convergence.

B. Object Detection and Tracking

The Viterbi Algorithm is fed with the predicted bounding
boxes for the next frame. This is done with the combination
of the object detector and tracker as shown in Fig. 1.

A Convolutional Neural Network (CNN)-based object de-
tector, Faster R-CNN [24], has been used to detect objects of
interest. The Faster R-CNN comprises of two modules: the
first module consists of a deep fully convolutional network
which proposes the regions of probable objects, and the second
module classifies the objects in those region proposals. The
object detector is located on the host with access to only
the distorted reconstructed frames. In order to enhance the
performance of the Faster R-CNN for degraded data as well,
the object detector has been trained on both non-distorted and
distorted data. Three classes of objects (airplanes, cars and
watercraft) from the ILSVRC VID dataset [25] were used to
train the Faster R-CNN network. The original video frames
from this data subset have a distortion applied corresponding
to λ = 10 and λ = 150 by passing the frames through
the proposed architecture. The ground truth bounding boxes
are used in place of the object detector to generate realistic
distortions that the model will encounter.

The object detector generates bounding boxes with class
labels. The bounding boxes are the inputs to a tracker. A
Kalman Filter-based multiple object tracker, Simple Online
and Realtime Tracking (SORT) [26] is used. It first predicts
the future bounding box locations using a linear motion model.
Then, it associates the identities using linear assignment be-
tween the new detections from the object detector and the most
recently predicted bounding boxes. The state of the Kalman
Filter, Xs for each detection is modeled using a linear motion
model as

Xs = [u, v, s, r, u̇, v̇, ṡ]T (8)

where u and v represent the horizontal and vertical location of
the center of the target, s and r represent the scale (area) and
the aspect ratio (width/height) of the target’s bounding box
respectively. Three of these time derivatives are a part of the
state as well: u̇, v̇, and ṡ; it assumes that the aspect ratio is
constant.

When a detection is associated with a target, the detected
bounding box is used to update the target state where the
velocity components are solved optimally via the Kalman filter
framework [27]. The predicted bounding boxes are extracted
from the predicted state of the Kalman filter. These bounding
boxes are the ROIs for the acquisition of the next frame t+ 1
which are also inputs to the Viterbi algorithm.

C. Performance Accuracy Metric

In order to evaluate the multi-target performance, we utilize
the Multiple Object Tracking Accuracy (MOTA) evaluation
metrics defined in [28]:

MOTA = 1−
∑
t

mt + fpt +mmet
gt

, (9)
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where mt: number of missed detections at time t. fpt: number
of false positives at time t. mmet: number of mismatch (track
switching) errors at time t. gt: number of ground truth objects
at time t.

Evaluation measures with a higher MOTA score correspond
to a better performance. The experiments are conducted for
different values of fixed λ. This gives different average bit rates
over a video sequence, which are a fraction of the maximum
rate. λ provides the operating point in the rate-distortion curve.
For different values of λ, the distortion in each frame is kept
constant while the bit rate fluctuates for each frame.

The priority weights wi of Eqn. 7 are assigned by us in
the Viterbi algorithm by object class in order to allocate more
bits in ROIs with high priority and fewer bits to the regions
of lower priority. Fine sampling of the image occurs in areas
where we allocate higher weights, whereas in the remaining
areas pixels are averaged with coarse resolution.

IV. EXPERIMENTAL RESULTS

Our preliminary results are generated by simulating the pro-
posed model on three sequences of the ILSVRC VID dataset:
(i) a video of airplanes, ILSVRC2015 val 00007010.mp4; (ii)
a video of a watercraft, ILSVRC2015 val 00020006.mp4; and
(iii) a video of cars, ILSVRC2015 val 00144000.mp4. These
videos were resized to 512 × 512 to accommodate the QT
structure. The results were generated using wObj = 1000 and
wBackgnd = 100 in reference to Eqn. 7.

We compare the results of two neural network (NN) models:
(i) the Faster R-CNN trained exclusively with pristine (non-
distorted) data of the three classes (Pristine NN model), and
(ii) the Faster R-CNN trained with pristine data and distorted
data for λ = 10 and λ = 150 (Mixed NN model). The NN
models were trained using ADAM as the optimizer with a
learning rate of 1e − 5. Dropout rate of 0.5 was used while
training both of the models.

Airplane Sequence
λ Bit Rate Compression MOTA (Mixed) MOTA (Pristine)
0 3.5523 0.7223 0.6429
10 18.6599 0.7404 0.6590

150 59.5121 0.6338 0.6187

Table I: ILSVRC2015 val 00007010.mp4 results

Watercraft Sequence
λ Bit Rate Compression MOTA (Mixed) MOTA (Pristine)
0 1.2414 0.8117 0.6883
10 3.3226 0.7922 0.7078

150 37.5215 0.7532 0.5260

Table II: ILSVRC2015 val 00020006.mp4 results

Car Sequence
λ Bit Rate Compression MOTA (Mixed) MOTA (Pristine)
0 2.6691 0.6516 0.5342
10 10.1177 0.6091 0.5413

150 49.0622 0.4126 0.4661

Table III: ILSVRC2015 val 00144000.mp4 results

Figure 3: f̂52 of the Airplance Sequence for λ = 150 (left)
Mixed NN (right) Pristine NN

Figure 4: f̂54 of the Watercraft Sequence for λ = 10 (left)
Mixed NN (right) Pristine NN

The results of the Pristine NN and Mixed NN models are
tabulated in Tables I, II, and III. The bit rate compression for
the test sequences at different λ values are also shown. As
λ increases from 0 to 10 to 150, the compression factor also
increases. For λ = 0, the distortion is 0, however, depending
on the scene, not all pixel values need to be sent to the host.
Thus, we are even able to achieve a lossless compression for
non-distorted videos.

For the test sequences, the Mixed NN Model well outper-
formed the Pristine NN Model except in the car Sequence
when λ = 150. We see as an example in Figure 3 that missed

Figure 5: f̂48 of the Car Sequence for λ = 150 (left) Mixed
NN (right) Pristine NN
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detections of the Pristine NN Model are more prevalent for
the Airplane Sequence than its Mixed NN Model counterpart.
In Figure 4, the Pristine NN Model produces a false positive
in the top left corner. Lastly, we see two errors in the Mixed
NN Model: one false positive, and one missed detection. This
occurs in multiple frames, which accounts for the relatively
low MOTA score. Overall, however, we have shown that
training with degraded data generally has improvements to
the tracking results.

V. CONCLUSION

This paper proposes a new method of video acquisition
for object tracking. ROIs influence how the architecture pro-
cesses new frames and updates QT structures. A predictive
Viterbi-based optimization was used to generate the FPA’s
acquisition modes and the optimal QT structure that minimizes
the weighted rate-distortion equation. A Faster R-CNN object
detector was trained with pristine and distorted data to improve
the tracking performance. A Kalman filter-based tracker was
used to track detected objects. Preliminary experiments pro-
vide strong support of the effectiveness of this method.
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