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Abstract—In this paper, we consider the problem of estimating
a sparse signal over a network. The main interest is to save com-
munication resource for information exchange over the network
and hence reduce processing time. With this aim, we develop a
distributed learning algorithm where each node of the network
uses a locally optimized convex optimization based algorithm. The
nodes iteratively exchange their signal estimates over the network
to refine the local estimates. The convex cost is constructed to
promote sparsity as well as to include influence of estimates from
the neighboring nodes. We provide a restricted isometry property
(RIP)-based theoretical guarantee on the estimation quality of
the proposed algorithm. Using simulations, we show that the
algorithm provides competitive performance vis-a-vis a globally
optimum distributed LASSO algorithm, both in convergence
speed and estimation error.

Index Terms—Sparse learning, convex optimization, greedy
algorithms, restricted isometry property.

I. INTRODUCTION

Learning of sparse signals/data from a limited number

of observations has become important in many applications,

for example, sparse coding, compressive sampling, dictionary

learning [1], [2], [3], etc. In the gamut of sparse learning,

use of convex optimization, mainly the ℓ1-norm based min-

imization has been extensively studied [4]. Other class of

sparse learning algorithms are greedy methods and Bayesian

approaches [5]. The problem of sparse signal learning becomes

more challenging over a distributed setup where observa-

tions are spread across nodes of a network. This distributed

sparse learning problem is relevant in applications such as

big data analysis [6], sensor networks [7], [8] etc. In such

a scenario, the sparse signal learning involves learning and

exchanging information among the nodes of the network. A

straightforward approach would be to process the observations

at a central node. This is expected to involve sending large

amounts of data over the network, resulting in a high demand

on communication resources. Furthermore, for security or

privacy issues, observations and system parameters may not

be accessible at a single place.

With this background, we design a distributed sparse

learning algorithm referred to as network pursuit denoising

(NBPDN) in this article. The algorithm solves a convex

optimization problem to learn a local estimate. The estimates

are exchanged between nodes of the network for further

improvement. We expect the algorithm to converge in a limited

number of iterations, thus saving communication resource and

requiring a limited processing time. In this article, our main

contributions are as follows:

• We develop an ℓ1-norm minimization based distributed

algorithm that achieves fast convergence. We construct

the penalty function to include influence of estimates

from the neighboring nodes.

• Using restricted-isometry-property based theoretical anal-

ysis, we state bounds on signal estimation quality.

A. Relation to Prior Work

We review relevant works on sparse learning over networks

in this subsection. This problem has been attempted via greedy

pursuit algorithms as well as the traditional ℓ1 norm mini-

mization based algorithms. The distributed greedy algorithms

comprise of simple (and mostly heuristic) algorithmic steps

and hence provide a computational advantage. In [9], a greedy

algorithm is proposed that involves exchange of observations,

estimates and observation matrix to reach a consensus on

the estimation over the network. A distributed iterative hard

thresholding algorithm is developed in [10] that provides

sparse learning for both static and time-varying networks.

Based on subspace pursuit [11] and CoSamp [12] algorithms

used for centralized sparse learning, a set of distributed algo-

rithms are proposed in [13] that provide a high computational

advantage.

Use of ℓ1-norm based convex optimization for sparse

learning has been investigated with considerable interest due

to its optimality and robust solutions. A distributed ap-

proach to solve the basis pursuit denoising (BPDN) [14] us-

ing the method of alternating-direction-method-of-multipliers

(ADMM) was proposed in [15]. This algorithm referred to

as distributed LASSO (D-LASSO), was shown to efficiently

solve the distributed BPDN problem. Further work was done

in [16] for the noiseless setting, that means for realizing

distributed basis pursuit [14]. Works in [17], [18] have pro-

posed distributed compressive sensing algorithms using convex

optimization. At this point we mention that the D-LASSO

[15] provides a globally optimum distributed solution using

ADMM but suffers from slow convergence. The slow conver-

gence of D-LASSO is shown in [9]. In contrast to D-LASSO,

our interest is to develop convex optimization based algorithms

that are fast in convergence, albeit at the expense of global

optimality.
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B. System Model

Consider a connected network with L nodes. The neighbor-

hood of node l is defined by the set, Nl ⊆ {1, 2, . . . , L}. Each

node is capable of receiving weighted data from other nodes

in its neighborhood. The weights assigned to links between

nodes can be written as a network matrix H ∈ R
L×L where

hlr is the link weight from node r to node l. Our task is

estimation of a sparse signal x in a distributed manner. The

received signal (of size Ml) at node l can be written as

yl = Alx+ el, (1)

where yl ∈ R
Ml , Al ∈ R

Ml×N is the system matrix and

el ∈ R
Ml is an additive noise. We assume that H is a right

stochastic matrix. This assumption is quite general in the

sense that any non-negative network matrix can be recast as

a right stochastic matrix by row normalization. Furthermore,

the observation noise is assumed to be bounded, i.e., ‖el‖≤ ǫ.
This is a commonly used assumption in ℓ1 minimization based

sparse learning algorithms [19]. The signal of interest can be

either exactly sparse (‖x‖0= s) or approximately sparse (s
highest amplitude elements of x contain the maximum energy

of the signal). We use ‖·‖0, ‖·‖1 and ‖·‖ to denote the standard

ℓ0, ℓ1 and ℓ2 norm of an argument vector, respectively.

We use calligraphic letters T and S to denote sets that are

sub-sets of Ω , {1, 2, . . . , N}. We use |T | and T c to denote

the cardinality and complement of the set T , respectively. For

the matrix A ∈ R
M×N , a sub-matrix AT ∈ R

M×|T | consists

of the columns of A indexed by i ∈ T . Similarly, for x ∈ R
N ,

a sub-vector xT ∈ R
|T | is composed of the components of x

indexed by i ∈ T . Also we denote (·)t and (·)† as transpose

and pseudo-inverse, respectively. In this work A
†
T , (AT )

†.

For a sparse signal x = [x1, x2, . . . , xi, . . . , xN ]t, the support-

set T of x is defined as T = {i : xi 6= 0}. We define

a function that finds support of a vector, as supp(x, s) ,

{the set of indices corresponding to the s largest amplitude

components of x}. If x has s non-zero elements then T =
supp(x, s). The s−Restricted-Isometry-Constant (RIC) [20]

of a matrix A is denoted as δs. Additionally, the {s, s′}-
restricted orthogonality constant (ROC) [21] of a matrix A

is denoted as θs,s′ .
The rest of the paper is organized as follows. The NBPDN

algorithm and the associated theoretical results are presented

in Section II. Simulation results and discussions are shown

in Section III. Finally, the conclusions are presented in Sec-

tion IV.

II. NETWORK BASIS PURSUIT DENOISING

In this section, we describe the proposed network basis

pursuit denoising (NBPDN) algorithm. The pseudo-code of the

NBPDN is shown in Algorithm 1. As the name suggests, the

structure of NBDN is motivated by the BPDN algorithm [14].

In the zeroth iteration, at each node we start with the standard

BPDN where ǫ is used as an error bound (as ‖el‖≤ ǫ). Then,

for each iteration we solve a modified cost of BPDN where we

add the penalty g(x, {x̂r,k−1, hlr}), r ∈ Nl. The penalty helps

to incorporate the influence of estimates from all neighboring

nodes.

Algorithm 1 NBPDN - Steps at Node l

Input: yl, Al, ǫ
Initialization:

k ← 0 (k denotes iteration counter)

1: x̂l,0 =argmin
x

‖x‖1 s.t. ‖yl −Alx‖2≤ ǫ (BPDN)

Iteration:

repeat

k ← k + 1 (Iteration counter)

1: x̂l,k = argmin
x

λ‖x‖1+(1 − λ)g(x, {x̂r,k−1, hlr}), r ∈
Nl s.t. ‖yl −Alx‖2≤ ǫ

until stopping criterion

Output: x̂l

For NBPDN, we define the g(.) function as,

g(.) = ‖x−
∑

r∈Nl

hlrx̂r,k−1‖1.

The use of
∑

r∈Nl

hlrx̂r,k−1 is a strategy for inclusion of past

estimates from neighboring nodes. We use the additive strategy

for simplicity and analytical tractability. If all the solutions of

neighboring nodes are sparse then the additive term is also

expected to be sparse. The use of ℓ1 norm promotes sparsity on

the difference signal

(

x− ∑

r∈Nl

hlrx̂r,k−1

)

. Therefore, our

hypothesis is that the ℓ1 norm based g(.) function promotes a

sparse solution for x. The solution is supposed to have a high

overlap between its support and the support of the sparse signal
∑

r∈Nl

hlrx̂r,k−1. In the cost minimization, the parameter λ ∈
[0, 1] needs to be carefully chosen to keep a balance between

the sparsity promoting function ‖x‖1 and the g(.) function.

Next, we mention our main theoretical result on bounding the

estimation error.

Main Theoretical Result: For notational clarity, we use RIC

constant δs1 , max
l
{δs1 (Al)} and ROC constant θs1,s2 ,

max
l
{θs1,s2 (Al)} where s1, s2 are constants. In the NBPDN

algorithm, the estimation error at iteration k, zl,k , x̂l,k −
x, follows a recurrence inequality, as stated in the following

theorem.

Theorem 1 (Recurrence inequality): For NBPDN, under the

condition δs+a +
√

s
b
(2λ′ − 1)θs+a,b < 1, at iteration k,

‖zl,k‖1≤ c2
∑

r∈Nl

hlr‖zr,k−1‖1+c3‖xT c
0
‖1+c4ǫ,

where λ′ = max{λ, 1/2}, c2 = 2(1− λ)
[

1 + 2λ
√

s
b

θs+a,b

c5

]

,

c3 = 2λ
[

1 + 2λ
√

s
b

θs+a,b

c5

]

, c4 =
4λ
√

s(1+δs+a)

c5
,

and c5 = 1− δs+a −
√

s
b
(2λ′ − 1)θs+a,b.
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In the above theorem, s is a parameter that determines the

sparsity approximation of the signal x. Also, T0 is the ap-

proximate sparsity index set of x, i.e., T0 = supp(x, s).
We next state the result that under certain technical condi-

tions and c1 = δs+a +
√

s
b
θs+a,b < 1, the NBPDN algorithm

gives an estimate that is bounded. With the help of the

recurrence inequality (Theorem 1), we state the following

result for a general λ.

Theorem 2 (Bound on estimation error): If c1 = δs+a +
√

s
b
θs+a,b < 1, then at iteration k, the estimation error is

bounded by

‖x− x̂l,k‖≤ d1kǫ+ d2k‖xT c
0
‖1,

where d1k =
ck2−1
c2−1 (c4 + c2c7), d2k =

ck2−1
c2−1 (c3 + c2c6), c6 =

2
[

1 + 2
√

s
b

θs+a,b

c5

]

, and c7 =
4
√

s(1+δs+a)

c5
.

The proof of the above theorems is not shown here for brevity

and will be discussed in an extended manuscript later.

The above bound holds at each node of the network. With

s = 4a = b and using the RIC and ROC properties [21],

the condition c1 < 1 reduces to δ2s < 0.472. Under the

assumption of no observation noise (ǫ = 0) and the signal

being exactly s-sparse (xT c
0
= 0), the NBPDN achieves exact

estimate of x at every node when δ2s < 0.472. Note that the

bound on the estimation error is a function of the iteration

value k. This means that the bound increases with increase in

iteration number, but remains finite when δ2s < 0.472.

A. Discussions

For the scenario of no cooperation over network, that is,

if H is an identity matrix, NBPDN is same as the BPDN

algorithm. Interestingly, it has been shown that the BPDN

has an RIP condition that δ2s(Al) < 0.472 [21] for bounded

reconstruction. Therefore, according to our analysis the RIP

conditions for BPDN and NBPDN are comparable. It is

interesting to compare NBPDN to other greedy pursuit based

network algorithms such as network greedy pursuit (NGP) [22]

and distributed hard thresholding pursuit (DHTP) [23] that

solve a similar problem. The NGP and DHTP were shown to

have RIP conditions of δ3s(Al) < 0.362 and δ3s(Al) < 0.333,

respectively. It can be seen that RIP conditions for these two

distributed greedy algorithms are more strict compared to the

proposed NBPDN.

III. SIMULATION RESULTS

In this section, we study the performance of the NBPDN

algorithm using simulations. We first describe the simulation

setup. Simulation results are then discussed.

A. Simulation Setup

We consider a randomly chosen connected network with

L nodes where each node is connected to other d nodes.

The parameter d referred to as the ‘degree of the network’

gives a measure of the network connection density. We

have d = |Nl|. Given the edge matrix E of the network,

we can generate a right stochastic network matrix H by
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Fig. 1: Performance of various algorithms with respect to

number of iterations over network (number of information

exchanging iterations). We set M = 100, N = 500, s = 20,

L = 20, d = 4, and SNR = 30dB. Performances are shown

for 300 iterations where we use logarithmic scale to show

iterations.

row normalization. For a fixed H, we perform Monte-Carlo

simulations where we randomly draw measurement matrices,

Gaussian sparse signals and additive Gaussian noise. The per-

formance metric used to compare the various algorithms is the

mean signal-to-estimation-noise-ratio (mSENR), mSENR =

1
L

L
∑

l=1

E{‖x‖2}
E{‖x−x̂l‖2} , where E(.) is the sampling average of the

simulation. We define the signal-to-noise ratio (SNR) for node

l as SNRl =
E{‖x‖2}
E{‖el‖2} . For simplicity, we assume that SNR

is same at all the nodes, that is ∀l, SNRl = SNR. Also, we

consider the observation matrices to be of the same size, i.e.,

∀l,Ml = M . We simulate D-LASSO and NBPDN algorithms.

The reason to compare with D-LASSO is that it provides a

benchmark performance – centralized solution of BPDN in

a distributed manner. For the above algorithms the stopping

criterion is assumed to be a corresponding maximum number

of iterations allowed. This constraint allows us to enforce a

measure of communication constraints and/or processing time

constraints. For all the experiments, we set observation size

M = 100 and signal dimension N = 500 with sparsity level

s = 20. The network is assumed to have 20 nodes (L = 20)

with degree, d = 4.

B. Experiment on Convergence Speed

In this experiment, we observe how fast the algorithms con-

verge with iterations. We set SNR = 30dB and the maximum

number of iterations be 300. In Fig. 1 , we show performance

of the NBPDN algorithm and D-LASSO. We assumed that the

network can support more communication such that D-LASSO

can continue for 300 iterations. We see that D-LASSO has a
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Fig. 2: Performance comparison of BPDN, D-LASSO and

NBPDN algorithms with respect to SNR. We set M = 100,

N = 500, s = 20, L = 20, d = 4 and maximum number of

iterations = 30.
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Fig. 3: Performance of algorithms with respect to the param-

eter λ. We set M = 100, N = 500, s = 20, L = 20, d = 4,

and SNR = 30 dB.

slow convergence, but provides best performance at the end of

iterations. This is expected as it solves the centralized sparse

learning problem using ADMM. It can be observed that the

NBPDN converges around 30 iterations.

C. Experiment on Robustness to Measurement Noise

In this experiment, we investigate performance of the

NBPDN algorithm at various SNR conditions to check ro-

bustness of algorithms to observation noise power. We show

performance of D-LASSO, NBPDN and BPDN. BPDN does

not cooperate over the network. Performances are shown in

Fig. 2 where we set allowable numbers of iterations as 30.

Note that D-LASSO hits a floor with increase in SNR. On the

other hand NBPDN shows improving performance with the

increase in SNR. It is interesting to note that for a communi-

cation constrained case and limited processing time, D-LASSO

turns out to be even poorer than BPDN. On the other hand,

the NBPDN shows good results for limited iterations.

D. Experiment on Sensitivity to Parameter λ

In all our previous experiments we have set the parameter

λ = 0.1 for the proposed algorithms. This value was chosen

based on an experiment where we vary λ for SNR = 30

dB and plot the performance in Fig. 3. It can be seen that

the chosen λ is in the good performance region. A higher

value of λ provides more weight to ‖x‖1 and less weight

to g(x, {x̂r,k−1, hlr}). That means, more weight is assigned

to sparsity promotion and less weight in using information

from neighbors. It can be observed that good performance is

achieved at lower value of λ where a higher importance is

given to the information from neighboring nodes.

IV. CONCLUSION

We show that the NBPDN algorithm is good for a dis-

tributed learning setup where a sparse signal is estimated over

a network. The NBPDN algorithm is fast in convergence, sav-

ing communication and computing resources. The algorithm

is robust with additive noise model, and has a theoretical

support on its performance. Our theoretical analysis results

show that the restricted-isometry-property based estimation

guarantees of the proposed NBPDN algorithm and the basis

pursuit denoising (BPDN) algorithm is similar. The NBPDN

algorithm can be used as a framework to design other convex

algorithm by engineering appropriate regularization constraints

for the g(.) function.
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