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Abstract—Bispectrum representations previously achieved a
successful classification of insulation fault signals in High-Voltage
(HV) power plant. The magnitude information of the Bispectrum
was implemented as a feature for a Deep Neural Network.
This preliminary research brought interest in evaluating the
performance of Bispectrum as complex input features that are
implemented into a Deep Complex Valued Convolutional Neural
Network (CV-CNN). This paper presents the application of
this novel method to condition monitoring of High Voltage
(HV) power plant equipment. Discharge signals related to HV
insulation faults are measured in a real-world power plant using
the Electromagnetic Interference (EMI) method and processed
using third order Higher-Order Statistics (HOS) to obtain a
Bispectrum representation. By mapping the time-domain signal
to Bispectrum representations the problem can be approached
as a complex-valued classification task. This allows for the novel
combination of complex Bispectrum and CV-CNN applied to the
classification of HV discharge signals. The network is trained on
signals from 9 classes and achieves high classification accuracy in
each category, improving upon the performance of a Real Valued
CNN (RV-CNN).

I. INTRODUCTION

Power generating plants exploit High-Voltage (HV) elec-
trical and mechanical assets including motors, transformers,
generators, cables and auxiliary equipment. The health and
proper operation of these assets is crucial as any failure will
primarily lead to system downtime which affects electricity
production. The consequences include high replacement or
maintenance costs. Furthermore, employees safety within the
site could be put at risk if the failure engenders significant
damage, where for instance an asset is on fire. Early detection
and identification of the asset failure would avoid such conse-
quences through condition monitoring. The latter avoids high
costs, losses, fines and civil complaints [1]. Condition moni-
toring not only avoids failure occurrence, but it also prevents
over maintenance and waste of resources when maintenance
is not required. This maximises business profit and return of
investment for the owning companies.

Faults within HV systems are commonly mechanical, which
generally occur in gearboxes and bearings, or they are related
to electrical insulation such as Arcing and Partial Discharges
(PD). Identification of such faults is usually performed through
an investigation of vibration [2], acoustic [3], audio or video
recordings during the asset’s operation. Another traditional
method of fault diagnosis is Electromagnetic Interference
(EMI) analysis approach [4], [5]. The exertion of EMI method
in condition monitoring of HV equipment within the power
production industry has been useful in the past decades. This
approach is able to detect insulation degradation and conduc-
tion faults as well as mechanical defects [6]. In the current
industry, EMI method is exploited by field experts who collect
and analyse EMI data in operating HV sites. This approach
has been successful throughout the years based on previous
forensic confirmation on assets shut-down or maintenance
decisions that were made due to faults occurrence. However,
utility companies are suffering from a lack in expert knowl-
edge and staff for condition monitoring, due to retirement
of an ageing workforce, as well as sickness and periods of
annual leave. This can have an impact on tasks that depend on
expert knowledge, specifically the analysis of data measured
on site in order to identify potential faults in a particular asset.
Companies can be left with no other option but to hire or train
more staff, however this requires a considerable amount of
investment. Furthermore, their process is time consuming and
not practical for continuous monitoring as the move to online
condition assessment requires automatic fault classification
and alerting. The implementation of continuous monitoring
within the power industry reduces both cost and production
losses by early detection of the potential risks.

The precise and early faults detection stage is critical in
HV power systems in order to avoid catastrophic failures.
Thus, a continuous and highly accurate condition monitor-
ing system is desired. The aim here is to approach this
problem by utilising Deep Learning technique. This implies
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a supervised learning for fault classification which reduces
the dependence on staff while possibly helping experts and
non-experts in gaining more confidence and information on
data interpretations. Furthermore, this brings the benefit of
minimising the consequences associated with asset failure,
such as maintenance costs, due to poor servicing.

The approach involves two main stages: data pre-processing
and Deep Learning classification. The first stage is achieved
using Bispectrum calculation on the captured EMI time series
signals. This provides both magnitude and phase information
contained within the time signals. The complex Bispectrum
is implemented as a two channels input to a Deep Complex
Valued Convolutional Neural Network (CV-CNN) inspired by
[7].

Bispectrum, has recently received the attention of biomed-
ical [8]–[10] and audio [11], [12] applications as a feature
extraction technique. The authors in [8] utilised Bispectrum
entropies to retrieve information from lung sound signals with
the aim of identifying lung health related condition (normal,
asthma or pneumonia). This feature extraction method was
introduced in [9] and [10] to Machine Learning and neural
network classifiers, on electrocardiogram signals for classifi-
cation of five different types of cardiac arrhythmia and emotion
recognition purposes, respectively. Mel frequency Cepstral
coefficients and Higher-Order Statistics (HOS) features were
extracted in [11] and [12] from non-linear and non-stationary
music audio signals, with the aim of musical instruments
and instrument family classification, using different neural
networks (e.g., counter propagation, feed forward neural net-
work). Bispectrum analysis was also exploited on vibration
signals, with non-stationarity characteristics, to identify gear-
box fault types [13]. More importantly, the magnitude of
Bispectrum was employed as image classification task for
EMI-based faults using Deep Neural Network [14]. The pre-
viously cited papers demonstrated the ability of Bispectrum
to retrieve robust features for the analysis of complex, non-
linear and non-stationary signals. This is the main motivation
to employ Bispectrum, as EMI signals are believed to be of
similar nature. However, the phase of the Bispectrum remained
unexploited. It is interesting to investigate the performance
of employing the complex Bispectrum, which represents both
magnitude and phase information, instead of using the mag-
nitude only.

The idea to adopt a CV-CNN was practised by few re-
searchers. Authors in [15] and [16] exploited CV-CNN for
image classification tasks and obtained the state-of-the-art
results. Authors in [17] applied CV-CNN in the biomedical
field for classification of sleep stage, and it was found that
CV-CNN achieve an improved classification performance and
considerably reduce the convergence speed when compared
to CNN performance. The motif behind using a CV-CNN in
this paper is due to the following advantages. The model is
computationally stable and efficient as it employs complex
numbers. Furthermore, the imaginary part of the complex
value may offer additional information regarding the data
that aids in classification task, since the imaginary and real

parts are treated independently as two channels in this work.
To the authors knowledge, the combination of the Complex
Bispectrum image and CV-CNN is novel to the literature. In
this paper, the newly developed model is tested on real-world
HV data for insulation fault classification.

The remaining of this paper is structured as follows. Section
2 introduces the Bispectrum and CV-CNN algorithms. Section
3 provides a description on the experimental set-up and data,
followed by results. Finally, Section 4 draws conclusions from
this research with future research and recommendations.

II. FEATURE EXTRACTION AND CLASSIFICATION
ALGORITHMS DESCRIPTION

This section describes the mathematical framework of the
proposed analysis. First, let’s denote scalars by lower case,
vectors by bold lower case and matrices by bold upper case.

A. Bispectrum Analysis

In time-domain HOS analysis, the first-order moment of a
discrete signal x[n];n = 1, ..., N is the mean µ and its second-
order moment is the variance σ2, both are defined in Equation
1 and 2 respectively.

µ = E(x[n]) (1)

σ2 = E(x[n]x[n+ τ1]) (2)

The third-order moment of the signal is defined as:

γ = E(x[n]x[n+ τ1]x[n+ τ2]) (3)

where τ1 and τ2 are time lags. Assuming that the signal x[n]
is zero mean, then the second- and third- order cumulants are
equal to the respective moments [18]. In frequency-domain
definition, the third-order cumulant spectrum, known as the
Bispectrum, is the Fourier Transform (FT) of the third-order
moment which can be defined as:

B(f1, f2) =
N∑

τ1=1

N∑
τ2=1

N∑
n=1

x[n]x[n+ τ1]x[n+ τ2]

· e−j2π·(f1τ1+f2τ2) (4)

Let n+ τ1 = m and n+ τ2 = k, by rewriting Equation 4 and
splitting the exponent, Bispectrum can be reformulated as:

B(f1, f2) = {
N∑
m=1

x[m]e−j2πf1m} · {
N∑
k=1

x[k]e−j2πf2k}

· {
N∑
n=1

x[n]e+j2π(f1+f2)n} = X(f1)X(f2)X
∗(f1 + f2) (5)

where X(f) is the FT and X∗(f) is the complex conjugate
of X(f). This equation allows a faster computation of the
Bispectrum, which is a complex measure that contains both
magnitude and phase information, unlike the power spectrum.
The Bispectrum reveals its content in two independent fre-
quencies f1 and f2. The outcome of Bispectrum analysis is
implemented as a complex input to the CV-CNN
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B. Deep Complex Neural Network

In this section, the mathematical definition of the CV-CNN
architecture and the main complex blocks are described.

1) Complex Convolution: The 2D complex convolution is
performed by convolving a complex filter matrix W = A+jB
by a complex vector z = x+ jy, where the matrices A,B, and
vectors x, y consist of real-valued entities. The convolution in
frequency domain can be formulated as follows:

W ∗ z = (A ∗ x− B ∗ y) + (j(B ∗ x + A ∗ y)) (6)

The resulting convolution has also real and imaginary parts
which can be written as:[

R(W ∗ z)
I (W ∗ z)

]
=

[
A -B
B A

]
∗
[

x
y

]
(7)

2) Complex Batch Normalization: Batch Normalization
(BN) is an important step in Deep Networks for various
advantages such as accelerating the training and providing a
higher learning rate to avoid vanishing gradient. A BN method
for CV-CNN is utilised to fit within the complex model, which
is calculated for a data input x in the following steps. First,
the centered data is multiplied by the inverse square root of
the 2× 2 covariance matrix defined in Equation 9 as:

x̂ = (V−1/2(x− E[x])) (8)

V =

[
Cov(R(x),R(x)) Cov(R(x),I (x))
Cov(I (x),R(x)) Cov(I (x),I (x))

]
(9)

The BN is then calculated for x̂ as:

BN(x̂) = Γx̂ + β (10)

where β is a complex parameter with real and imaginary
learnable components, Γ is a 2× 2 scaling parameter defined
in Equation 11.

Γ =

[
γrr γri
γri γii

]
(11)

γrr, γii and γri are set to 1/
√
2, 1/

√
2 and 0 respectively at

the start of the operation. Moving averages are implemented
to estimate the complex BN parameters, where they are
initialised to zero for β, Cov(R(x),I (x)), and to 1/

√
2 for

Cov(R(x),R(x)) and Cov(I (x),I (x)).
3) Complex ReLU: In this work the activation is applied

to the real and imaginary parts of the complex value indepen-
dently. Here, a complex ReLU (cReLU) is utilised as follows:

cReLU(z) = ReLU(R(z)) + jReLU(I (z)) (12)

This results in preserved phase and magnitude information
when the angle θ ∈]0, π/2[. The real part is discarded when
θ ∈ [π/2, π], the imaginary part when θ ∈ [3π/2, 2π] and both
parts are discarded when θ ∈]π, 3π/2[.

TABLE I
STRUCTURE OF THE CV-CNN ARCHITECTURE. THE COMPLEX

CONVOLUTION BLOCK CONSISTS OF 2D COMPLEX CONV., COMPLEX BN
AND CRELU.

Layer Kernel No. filters Stride Operation
1 6x6 16 2 Complex Conv. block
2 2x2 - 2 Average 2D Pool.
3 3x3 32 2 Complex Conv. Block
4 2x2 - 2 Average 2D Pool.
5 3x3 64 1 Complex Conv. Block
6 2x2 - 2 Average 2D Pool.
7 3x3 64 1 Complex Conv. Block
8 2x2 - 2 Average 2D Pool.
9 3x3 128 1 Complex 2D Conv.+ReLU

10 3x3 128 1 Complex Conv. Block
11 2x2 - 2 Average 2D Pool.
12 Flatten, Dense(cReLU), SoftMax

TABLE II
DATA SET INFORMATION.

No. Training No. Validation No. Testing
Per class 95 12 12

Total 855 108 108

4) CV-CNN architecture: The CV-CNN model was con-
structed using the complex 2D convolution, cReLU and com-
plex BN described above, in addition to the standard Keras
average pooling. The overall architecture is summarised in
Table I and it is implemented in this work with a learning
rate starting at 0.001 then it is set to 0.0001 after 10 epochs.
The model is trained over 100 epochs with a batch size of 32.

III. EXPERIMENTAL SET-UP

The data utilised for classification in this paper was mea-
sured by means of EMI method from real-world operating
assets within HV power plant. It consists of time signals
captured at a sampling rate of 24kHz, where each signal was
examined by an expert and labelled according to the event. The
interested reader in further details on EMI measurement can
be referred to [4], [5], [19]. A total of 9 different events were
identified and labelled as Arcing, Corona, Data Modulation,
PD, Process Noise, Random Noise, Exciter pulses, minor
PD and micro Sparking. Some of these events represent an
insulation fault (e.g. Arcing, micro Sparking, Corona etc.) and
some other are common interference (e.g. Data Modulation,
Process and Random Noise). Figure 2 illustrates time signals
example from each class label. A total of 1071 signals are
utilised, where 80% of the data is used for training the model
with 10% for validation, and the remaining 10% were used for
testing. This is performed over 10 folds to achieve a ten-fold
cross validation. Information on the data splitting for each fold
is summarised in Table II.

The overall signal analysis and classification process is
summarised in Figure 1. First, Bispectrum of each signal
was calculated to obtain complex valued information as a
64x64 complex matrix. The latter was reshaped to a 64x64x2
tensor, where the 2 channels represent the real and imaginary
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(a)

(b)

Fig. 1. (a) Signal pre-processing (b) CV-CNN model architecture, where complex conv. block includes complex convolution, complex BN and cReLU.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Time signal examples (a) Arcing (b) Corona (c) Data Modulation (d)
Partial Discharge (PD) (e) Process Noise (f) Random Noise (g) Exciter (h)
minor PD (i) micro Sparking.

parts. The resulting tensor is then implemented into the CV-
CNN. For comparison purposes, the same experiment was
performed on a Real Valued CNN (RV-CNN) which follows
the same architecture as CV-CNN’s with the following excep-
tions. Normal convolution and BN are employed instead of
the complex ones, max pooling function is applied instead of

Fig. 3. Average confusion matrix calculated over the 10 validation folds
for RV-CNN. Labels denoted as Arcing (A), Corona (C), Data Modulation
(DM),Partial Discharge (PD), Process Noise (PN), Random Noise (RN),
Exciter (E), minor PD (mPD), micro Sparking(mS). Classification accuracy
is shown in the bottom right corner.

average pooling. Here, the input to the model is the magnitude
of the Bispectrum. The average results over the ten folds are
presented in this section in terms of confusion matrices for RV-
CNN in Figure 3 and for CV-CNN in Figure 4. The precision,
recall and average accuracy are also presented in the confu-
sion matrices. It is observed that the RV-CNN is unable to
classify Corona and has lower overall accuracy. HV condition
monitoring results are critical, therefore it is important for the
model to have a minimum level of confidentiality and accuracy
in classifying each class. Employing the CV-CNN improves
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Fig. 4. Average confusion matrix calculated over the 10 validation folds
for CV-CNN. Labels denoted as Arcing (A), Corona (C), Data Modulation
(DM),Partial Discharge (PD), Process Noise (PN), Random Noise (RN),
Exciter (E), minor PD (mPD), micro Sparking(mS). Classification accuracy
is shown in the bottom right corner.

the classification of this particular class, as well as PD class.
In addition, the overall accuracy is improved. These results
could justify the advantage of utilising the imaginary part of
the Bispectrum and hence the phase information to distinguish
between the classes more efficiently. By referring to Figure 2,
the different signal classes can be easily confused to the naked
eye, for instance, Corona, Data Modulation, Process Noise,
Random Noise and minor PD. This hinders the classification
task. Furthermore, the presence of hidden features may not be
retrieved in the real space which explains the obtained results.

IV. CONCLUSION

A CV-CNN combined with complex Bispectrum was pro-
posed in this paper in order to exploit both phase and magni-
tude information contained within EMI signals to effectively
classify between faults within HV power plants. The pre-
liminary experiments on real-world data demonstrate that the
CV-CNN performs better than RV-CNN, which employs the
magnitude information of the Bispectrum only. Therefore it
can be concluded that the phase information is potentially
a useful feature and hence the proposed combination was
successful. The promising findings open various opportunities
to develop different complex Deep Networks for an enhanced
performance as there is still room for improvement. Future
studies could also aim to replicate results in a larger data set.
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