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Abstract—In this paper, we propose secure dictionary learning
for sparse representation based on a random unitary transform.
Edge cloud computing is now spreading to many application
fields including services that use sparse coding. This situation
raises many new privacy concerns. The proposed scheme provides
practical MOD and K-SVD schemes that allow computation on
encrypted signals. We prove, theoretically, that the proposal has
exactly the same dictionary and sparse coefficient estimation per-
formance as sparse dictionary learning for unencrypted signals. It
can be directly carried out by using MOD and K-SVD algorithms.
Moreover, we apply it to image modeling based on an image
patch model. Finally, we demonstrate its excellent performance
on synthetic data and natural images.

Index Terms—Sparse Representation, Dictionary Learning,
Random Unitary Transform, Secure Computation

I. INTRODUCTION

With the advent of the big data era, digital contents continue
to explode. Sparse modeling [1]- [6] is drawing attention
as an information processing model for extracting useful
information hidden in a large amount of data. It represents
observed signals effectively as a linear combination of a small
number of bases chosen from the basis functions trained by
the dictionary learning algorithm. The sparse coding model has
found numerous processing applications such as image/video,
audio, biological signal, seismic data and more [2].

In another trend, edge cloud computing including big data
analysis is spreading in many fields. However, edge cloud
computing has some serious issues for end users, such as
unauthorized use, leak of data, and privacy compromisation,
due to the unreliability of providers and some accident [7].
Many studies have examined the processing of encrypted
data; most proposals use homomorphic encryption (HE) and
secure multiparty computation (MPC) [8]. Even though ser-
vice providers cannot directly access the native content of
the encrypted signals, they can still employ HE and MPC.
However, these schemes can not be applied yet to sparse
coding algorithms. Moreover, it imposes high computation
complexity and large cipher text size, so further advances
are needed for some applications such as big data analysis,
advanced image/video processing.

Our study focuses on secure computation that is practical.
The proposed scheme, based on a random unitary transform,
has much lower computation complexity than either HE or

Fig. 1. Sparse coding: observed signals effectively are represented as a linear
combination of a small number of bases.

MPC. We have already proposed a secure Orthogonal Match-
ing Pursuit (OMP) computation method for image modeling
[9] and network BMI decoding [10]. Secure OMP can estimate
the sparse coefficients from encrypted signals.

In this paper, we propose a secure sparse dictionary learning
method. Method of Optimal Direction (MOD) [4] and K-
Singular Value Decomposition (K-SVD) [5] are well-known
dictionary learning algorithms which seek to create dictio-
naries that fit the observed signals. The proposed scheme
provides practical MOD and K-SVD schemes that allow
computation on encrypted signals. It is shown that secure
dictionary learning can not only protect observed signals, but
also match the estimation performance of sparse dictionary
learning for unencrypted signals. It can be directly carried out
by using MOD and K-SVD algorithms, without preparing any
algorithms specialized for secure MOD and K-SVD comput-
ing. Moreover, we apply it to image modeling based on an
image patch model. Finally, we demonstrate its performance
on both synthetic data and natural images.

The organization of this paper is as follows. Section II
overviews dictionary learning. In Sec. III, we propose a secure
MOD and K-SVD computation process. Section IV introduces
its application to image modeling. Section V shows simulation
results. Conclusions are given in Sec. VI.

II. OVERVIEW OF DICTIONARY LEARNING

In this section, we overview dictionary learning and two
representative algorithms (MOD and K-SVD).

A. Sparse Representation

Given observed signal set Y = {yi}Ni=1 ∈ RM×N , we
assume that there exists an over-complete dictionary matrix
D = {d1, ...,dK} ∈ RM×K , whose columns contain K
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prototype signal-atoms dk. As shown in Fig. 1, Y can be
represented as a sparse linear combination of these atoms:

Y = DX, (1)

where X = {xi}Ni=1 ∈ RK×N is a sparse coefficients set.
If M < K and D is a full-rank matrix, an infinite number

of solutions to the representation problem are available. The
solution with the fewest number of nonzero coefficients is cer-
tainly an appealing representation. This sparsest representation
is the solution given by

min
D,X

||Y −DX||2F subject to ∀i, ||xi||0 ≤ T0, (2)

where ||·||0 is the l0-norm which counts the nonzero entries
of the vector, ||A||F =

√∑
ij A

2
ij .

Sparse dictionary learning solves the optimization problem
of Eq. (2) by alternately repeating two steps: 1) Sparse
Coding and 2) Dictionary Update. The Sparse Coding step
fixes dictionary D and estimates sparse coefficients set X .
Dictionary Update step fixes X and updates dictionary D.
MOD and K-SVD are well known sparse dictionary learning
algorithms. MOD and K-SVD use the same Sparse Coding
step, the method of updating the dictionary is different. The
following is an overview of the dictionary learning algorithm:

Dictionary Learning Algorithm

Task: Train a dictionary D to sparsely represent the data
Y = {yi}Ni=1 by approximating the solution to the problem
posed in Eq. (2).

Initialization: Set the dictionary matrix D ∈ RM×K with l0

normalized columns.

Main Iteration: Repeat until convergence (stopping rule):
· Sparse Coding Step: Use a pursuit algorithm such as
Orthogonal Matching Pursuit (OMP) [6], to approximate the
solution of

xi = arg min
x

||yi −Dxi||22 subject to ||xi||0 ≤ T0. (3)

· Dictionary Update Step: Update D by MOD or K-SVD.
Each dictionary update step is below.

B. MOD Dictionary Update Step

MOD uses a pseudo inverse to minimize the squared error
between Y and DX . Update the dictionary by the formula:

D = arg min
D

||Y −DX||2F = Y XT (XXT )−1. (4)

C. K-SVD Dictionary Update Step

Unlike MOD, K-SVD updates one atom sequentially. Each
atom dk (k = 1, 2, · · · ,K in D) is updated by the following
steps:
1) Compute the overall representation error matrix Ek by

Ek = Y −
K∑

j ̸=k

djx
j
T , (5)

Fig. 2. Secure dictionary learning architecture.

where xj
T is the jth row in X .

2) Define the group of examples that use this atom:
ωk = {i | 1 ≤ i ≤ K, xk

T (i) ̸= 0}. (6)

Restrict Ek by choosing only the columns corresponding to
ωk, and obtain ER

k .
3) Apply Singular Value Decomposition (SVD):

ER
k = U∆V T =

n∑
i=1

ui · σiv
T
i . (7)

Choose the updated dictionary atom dk to be the first column
u1. Updated coefficient vector xk

R, taken as the first column,
is multiplied by the first eigenvalue: σ1v

T
1 .

III. SECURE DICTIONARY LEARNING

In this section, we propose secure dictionary learning (MOD
and K-SVD) that allows computation in the encrypted domain.

A. Random Unitary Transform

Vector f i (i = 1, · · · , L) ∈ RN is encrypted by random
unitary matrix Qp ∈ CN×N with private key p as follows:

f̂ i = T (fi, p) = Qpfi, (8)

where f̂i is an encrypted vector; L is the number of vectors.
Note that the unitary matrix that Qp satisfies is encrypted by
unitary matrix Qp ∈ CN×N with parameter p as

Q∗
pQp = I, (9)

where [·]∗ and I represent the Hermitian transpose operation
and the identity matrix, respectively. Gram-Schmidt orthogo-
nalization is a typical method for generating Qp. In addition
to unitarity, Qp must offer randomness when generating the
encrypted signal. Security analyses of the protection schemes
have been considered in terms of brute-face attack, diver-
sity and irreversibility [12]. The encrypted vector has the
key properties of conservation of the Euclidean distances
(||fi−fj ||22 = ||f̂i− f̂j ||22), norm isometry (||fi||22 = ||f̂i||22),
and conservation of inner products (f∗

i f j = f̂
∗
i f̂ j).

B. Secure MOD and secure K-SVD

Figure 2 illustrates the architecture of secure dictionary
learning. At the local site, the random unitary transform Qp

with private key p is applied to a given set of training signals
Y . The encrypted set, Ŷ , is sent to the edge or cloud site. By
using only the encrypted set Ŷ , the secure dictionary learning
method designs the encrypted dictionary D̂ in the encrypted
domain. The encrypted set Ŷ is generated by

Ŷ = T (Y , p) = QpY . (10)
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Here we consider the following optimization problem:

min
D̂,X

∣∣∣∣∣∣Ŷ − D̂X
∣∣∣∣∣∣2
F

subject to ∀i, ||xi||0 ≤ T0, (11)

where D̂ = {d̂1, ..., d̂K} ∈ RM×K is an encrypted dictionary.
1) Sparse Coding Step: In Sparse Coding step, fix dictio-

nary D̂ and estimate sparse coefficients set X by solving
Eq.(11). We use OMP to approximate the solution of

xi = arg min
xi

∣∣∣∣∣∣ŷi − D̂xi

∣∣∣∣∣∣2
F

subject to ||xi||0 ≤ T0. (12)

Previously, we proved that the solution obtained by solving
Eq. (12) by OMP is equal to the solution yielded by the
unencrypted variant of the OMP algorithm [9]- [10] under
the condition D̂ = QpD.

2) Secure MOD Dictionary Update Step: Update the en-
crypted dictionary D̂ by the formula:

D̂ = arg min
D̂

∣∣∣∣∣∣Ŷ − D̂X
∣∣∣∣∣∣2
F
= Ŷ XT (XXT )−1. (13)

From the definition Ŷ = QpY , Eq. (13) can be rewritten as

D̂ = QpY XT (XXT )−1. (14)

3) Secure K-SVD Dictionary Update Step: Similar to the
derivation of the unencrypted version of K-SVD, the overall
representation error matrix Êk is written by

Êk = Ŷ −
K∑

j ̸=k

d̂jx
j
T . (15)

Restrict Êk by choosing only the columns corresponding to
ωk, and obtain Ê

R

k . Apply SVD:

Ê
R

k = Û∆̂V̂ T =

n∑
i=1

ûi · σ̂iv̂
T
i . (16)

Choose the updated dictionary atom d̂k=û1. Update coefficient
vector xk

R = σ̂1v̂
T
1 .

Next, we show the relationship between the solution ob-
tained by K-SVD (i.e. dk=u1, xk

R = σ1v
T
1 ) and the solution

obtained by secure K-SVD (i.e. d̂k=û1, x̂k
R = σ̂1v̂

T
1 ) . Similar

to the derivation of the unencrypted version of K-SVD, the
overall representation error matrix Êk of Eq. (15) can be
written as

Êk = Ŷ −
K∑

j ̸=k

d̂jx
j
T = QpEk, (17)

where we assume that d̂j=Qpdj , which is derived from the
condition D̂ = QpD [9]- [10] in the Sparse Coding step.

From Eq. (17), Ê
R

k can be written as

Ê
R

k = ÊkΩK = QpEkΩK = QpE
R
k . (18)

Furthermore, by using Eq. (7), Eq. (18) can be rewritten as
follows:

Ê
R

k = QpE
R
k = Qp

n∑
i=1

ui · σiv
T
i . (19)

Therefore, the dictionary atom and the sparse coefficients of
the encrypted version of K-SVD can be expressed by using
that of the non-encrypted version of K-SVD as follows:

·Sparse coefficients : x̂k
R = σ1v

T
1 (20)

·Dictionary atom : d̂k = Qpu1 (21)

4) Proof of Eq. (20): From Eq. (16), v̂i is the i-th eigen-
vector of

(
Ê

R

k

)T
Ê

R

k and can be written as:(
Ê

R

k

)T
Ê

R

k v̂i = λ̂iv̂i, (22)

where λ̂i is the i-th eigenvalue. λ̂i and the singular value σ̂i

have the relationship of σ̂i =
√
λ̂i. By using relationship

Ê
R

k = QpE
R
k , the left side of Eq. (22) can be expressed

as (
Ê

R

k

)T
Ê

R

k =
(
ER

k

)T
QT

p QpE
R
k =

(
ER

k

)T
ER

k . (23)

Since
(
Ê

R

k

)T
Ê

R

k and
(
ER

k

)T
ER

k are equal, each eigenvector
is also equal:

v̂i = vi. (24)

Therefore, Eq. (20) is satisfied.
5) Proof of Eq. (21): In SVD of Ê

R

k shown in Eq. (16),
the eigenvectors on the left side ûi and the eigenvectors on
the right side v̂i have the relationship: ûi = ±Ê

R

k v̂i/
√
λ̂i

(From the general property of SVD). Using this relationship,
Ê

R

k = QpE
R
k and Eq. (24), the first term of Eq. (16) can be

expressed as follows:

û1 · σ̂1v̂
T
1 =

±Ê
R

k v̂1 · σ̂1v̂
T
1√

λ̂1

= ±QpE
R
k v1v

T
1 . (25)

Similarly, the first term of Eq. (19) can be written as

Qpu1 · σiv
T
1 =

±QpE
R
k v1 · σ1v

T
1√

λ1

= ±QpE
R
k v1v

T
1 . (26)

Therefore, Eq. (21) is satisfied.

IV. APPLICATION TO IMAGE MODELING

In this section, we apply the secure dictionary learning
proposed in the previous section to image modeling.

A. Sparse Coding for Image Patches

We consider image patches of size
√
M ×

√
M pixels that

are ordered lexicographically as column vectors ŷi ∈ RM

(i = 1, · · · , N ). The patches are extracted from image Y as
shown in Fig. 3. Next, each image patch yi is transformed into
encrypted image patch ŷi by random unitary transform Qp.
Given the set Ŷ = {ŷi}Ni=1, we assume that an encrypted
image patch set Ŷ can be represented sparsely over the
encrypted over-complete dictionary D̂ ∈ RM×K .

The encrypted image patch model can be used for applica-
tions such as secure image compression [9] and secure image
pattern recognition [11]. Here we apply it the Encryption-
then-Compression (EtC) system [13] for image compression.
In conventional secure image transmission systems, image
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Fig. 3. Secure sparse coding of image patches.

compression has to be conducted prior to image encryption.
On the other hand, EtC systems are expected to offer privacy
protection as they allow image encryption to be conducted
prior to compression. This approach can compress images on
the edge cloud while keeping the image data secure.

B. Generation of Random Unitary Matrices

The secure dictionary learning proposed in the previous sec-
tion is applied to each encrypted image patch ŷi. We generate
the encrypted image set Ŷ by the following transforms:

Ŷ = T (Y , p) = QpY , (27)

where p and Qp are a secret key and a random unitary
transform, respectively. For each encrypted image patch ŷi,
the sparse coefficient xi is estimated. The decoded image ẏi

can be calculated by ẏi = Q∗
pD̂xi, where [·]∗ means the

Hermitian transpose operation.
The image quality of decoded image ẏi at each patch

can be controlled by using sparsity ratio si or threshold ϵi.
Sparsity ratio si is the ratio of the number of nonzero sparse
coefficients to the total number of elements of the dictionary
D̂. Threshold ϵi determines the stopping condition of the
secure OMP algorithm, i.e. (l2-norm of reconstruction error)
< ϵi. In order to keep the image quality of each image patch,
the same threshold is set: ϵi = constant (i = 1, · · · , N ).

V. NUMERICAL DEMONSTRATIONS

We demonstrate the performance of the proposed method
both on synthetic data and in an image modeling application
involving natural images.

A. Synthetic Data

We create random matrix D of size 30 × 60. We generate
sparse vectors x. We set the target cardinality to T0 = 4.
Once x is generated, we compute y = Dx. We then encrypt
y by using random unitary transform Qp by designing by
Gram-Schmidt orthogonalization, i.e. ŷ = Qpy. We perform
4000 such tests and present average results. We present two
measures - normalized l2-norm error and recovery of the
support. Normalized l2-norm error is computed as the ratio
||x - x̂||2/||x||2. Recovery of the support indicates l2 prox-
imity between the two solutions. Denoting the two supports
as Ŝ and S, we define this distance by

dist(Ŝ,S) =
max{|Ŝ|, |S|} − |Ŝ ∩ S|}

max{|Ŝ|, |S|}
. (28)

(a) Secure K-SVD and MOD (b) Non-secure K-SVD and MOD

Fig. 4. Normalized l2-norm error: ||x - x̂||2/||x||2.

(a) Secure K-SVD and MOD (b) Non-secure K-SVD and MOD

Fig. 5. Recovery of the support: dist(Ŝ,S) .

(a) Barbara (b) Encryped image

Fig. 6. Original and encrypted images.

The results are shown in Figs. 4 and 5. Horizontal axis shows
iteration number. As can be seen, secure K-SVD gives better
results than secure MOD, both in final outcome and speed of
convergence. We compare the proposed method with the MOD
and K-SVD algorithms as applied to non-encrypted signals.
Figures 4 and 5 show that the proposed precisely matches
the performance of the MOD and K-SVD algorithms for non-
encrypted signals with regard to both measures.

B. Image Modeling

We show the practicality of the proposed algorithm by
conducting image modeling experiments on natural images.
We train a dictionary for sparsely representing 8 × 8 patches
extracted from the 512 × 512 Barbara image. Each extracted
patch is permuted randomly using a random integer generated
by a secret key p. Then each patch is transformed by a
64 × 64 random unitary transform Qp which is designed by
Gram-Schmidt orthogonalization. Figure 6 shows the original
Barbara and corresponding encrypted images.

We extract one fifth of these encrypted patches. Feeding
the encrypted patch set into the secure K-SVD and secure
MOD with 50 iterations yields encrypted dictionary D̂. In
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(a) Encrypted Dictionary D̂ (b) Decrypted Dictionary D̂

Fig. 7. Dictionary designed by secure K-SVD.

TABLE I
DECODED/DECRYPTED IMAGE QUALITY BY USING SECURE K-SVD FOR

AUTHORIZED AND UNAUTHORIZED USERS.

(a) Authorized user
ϵ 3.0 5.0 7.0 10.0 15.0
S̄ 0.155 0.088 0.058 0.035 0.017

PSNR [dB] 39.28 35.61 33.21 30.70 27.95

(b) Unauthorized user
ϵ 3.0 5.0 7.0 10.0 15.0
S̄ 0.155 0.088 0.058 0.035 0.017

PSNR [dB] 10.40 10.54 10.39 10.40 10.47

both cases, we set the number of atoms to K = 256 and
the l0-norm constraint T0 to 5 atoms per patch. For example,
an encrypted dictionary designed by the secure K-SVD and a
corresponding decrypted dictionary are shown in Fig. 7. No
visible information is present in the encrypted dictionary.

Figure 8(a) shows average convergence properties of l2-
norm error ||ŷi−D̂xi||2. Both secure algorithms have almost
the same performance. Then, by using the trained encrypted
dictionaries, we use the secure OMP algorithm to carry out
image modeling [9]. Figure 8(b) shows coding efficiency
(the average sparsity ratio S̄ vs. decoded/decrypted image
quality PSNR [dB]) when compared with over-complete DCT.
Average sparsity ratio S̄ is defined by S̄=

∑N
i=1 si/N . It can

be seen that secure K-SVD can represent the image with fewer
sparse coefficients than over-complete DCT.

Finally, we evaluate the security strength of the proposed
method. Table I shows decoded/decrypted image quality at-
tained by secure K-SVD for authorized and unauthorized (a
decryption key dj ̸= an encryption key di) users. Figure 9
shows samples of the decoded/decrypted images for authorized
and unauthorized users. These results show that the encrypted
images can’t be decrypted by unauthorized users.

VI. CONCLUSIONS

In this paper, we proposed secure MOD and secure K-SVD
computations for sparse representation. The proposed scheme
provides practical MOD and K-SVD schemes that allow
computation on encrypted signals. We prove, theoretically,
that the proposal has exactly the same dictionary learning
performance as the unencrypted variants of the MOD and
K-SVD schemes. Finally, we confirmed its performance on
synthetic data and natural images.

(a) Convergence (b) Coding efficiency

Fig. 8. Properties of secure MOD and secure K-SVD.

(a) ϵ = 3.0 (PSNR = 39.28 [dB]) (b) ϵ = 3.0 (PSNR = 10.40 [dB])

Fig. 9. Decoded/decrypted images by authorized (left) and unauthorized
(right) users.
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