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Abstract—Dementia is an overall term used to describe the
reduced cognitive functioning in human beings, that is se-
vere enough to impact their daily activities. Early diagnosis
of dementia is imperative to provide timely treatment, either
medication or therapy to alleviate the effects and sometimes
slow the progression of dementia. In this work, we use speech
processing and machine learning techniques to automatically
classify speech into (a) healthy (HC) (b) with mild cognitive
impairment (MCI) or (c) with Alzheimer’s disease (AD). Only
acoustic non-linguistic parameters are used for this purpose,
making this a language independent approach. We evaluate
our work using dementia and healthy speech from Pitt corpus
of DementiaBank database. The performance of a three class
Random Forest classifier is compared with our system comprising
multiple two-class Random Forest classifiers cascaded to form
a three class classifier, wherein a combination of approximate
posterior probabilities is used to obtain a final class probability
estimate. additional, patient speech is classified at segment level as
well as at overall conversation level. Post processing on the patient
speech classification at segment level provides a classification
accuracy of 82% which is a significant absolute improvement
of 8% over a simple three-class classifier performance.

Index Terms—Alzheimer’s disease, Dementia, classification,
feature selection

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive brain disease that
begins well before clinical symptoms emerge. AD spans a con-
tinuum including those with dementia due to AD, with mild
cognitive impairment (MCI) due to AD and asymptomatic
individuals who have verified biomarkers of AD [1]. Advanced
dementia renders a person incapable of performing everyday
activities since it is mainly characterized by difficulties with
memory, language, problem-solving and other cognitive skills.
Timely diagnosis of AD is imperative to provide in-time
treatment. Manual diagnosis of AD requires specialized skills
of neurologists and geriatricians through a series of cognitive
tests such as the mini mental state examination (MMSE) [2].
Other means of diagnosis involve collection/examination of
cerebrospinal fluid from the brain and a magnetic resonance
brain imaging (MRI), that can be invasive and painful as well
as expensive and tedious. Hence a simple and non invasive
approach is preferable. Speech is a good indicator of the
cognitive state of a person [3] and can be acquired non
invasively in the form of a natural audio conversation with
no additional stress on the person.

Both linguistic (lexicon syntactic and semantic) and para-
linguistic (acoustic) speech parameters have been harnessed to
estimate AD stage. Earlier works used manual transcriptions to
obtain linguistic features from dementia speech to classify into
dementia stages [4], [5], recent works use automatic speech
recognition to obtain the lexical and semantic features for this
purpose [6], [7]. N-gram based approaches have been used
for automatic detection of AD from speech [8], [9]. Working
with acoustic features alone provides a language independent
framework for dementia classification [10]–[12]. High accura-
cies have been reported for two-class classification, especially
for the healthy control (HC) and the AD speech [12]. However,
classification accuracy reduces when more than one stage of
dementia is considered [8]. Moreover, classification of control
vs. MCI and MCI vs. AD is non trivial wherein different
sets of features provide better separation between the class
pairs [11].

In this paper, we present a technique to classify a given
utterance into one of the three classes, namely, healthy (HC),
with MCI or with AD. We extend multiple binary classifiers
(Random Forest) to form a three class classifier, using poste-
rior probability estimates from the three two-class classifiers
to make a decision. Classification is carried out on two
sets of data (a) Speech turns belonging to the patient are
concatenated and classified as a whole. (b) Each patient turn
within a clinician-patient conversation is treated as a single
utterance and classified separately, the complete utterance is
then classified into the class to which maximum number of
turns belong. The peformance of a conventional three-class
classifier is compared with our proposed technique, where 3
binary cassifiers are fused by combining posterior probabili-
ties. Results show that the proposed system along with post
processing provides the best classification performance. Since
classification is done using only acoustic descriptors computed
from speech, this can be considered as a language independent
approach. To the best of our knowledge this is the first attepmt
at three-classification of AD, MCI and HC utterances using
only acoustic parameters.

The rest of the paper is organized as follows. Section II
describes the methodology and the proposed system to extend
two class classifiers into multi-class classifiers. Section III
describes the experimental setup, section IV gives the results
and analysis of results. We conclude in section V.
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Fig. 1: Approach to convert multiple-class database into multiple two-
class discriminant boundaries

II. METHODOLOGY

In this paper we consider classification of an utterance into
one of the three classes, namely HC, MCI and AD. A straight
forward technique would be to use a three class classifier for
the task. However, it can be seen from literature that two-
class classfication into HC and MCI or classification into
MCI and AD is not a trivial task, though classification of
HC and AD have shown high accuracies [10]. However, when
three class classification is used, the accuracy drops further.
We hypothesize that this can be attributed to the fact that
speech features that represent a clear separation between the
three class pairs (HC-MCI; MCI-AD; AD-HC) are different.
In order to tackle this problem, we propose a system that uses
multiple two class classifiers to form a three class classifier as
described in [13].

Let us consider a database with N classes represented by
class label ωn where n = 1, 2, 3 · · ·N . The goal is to classify,
a new object from the same distribution into one of the N
classes.
Further, we train a discriminant function fi,j(x;ω) where x
is the object from the database, on a two-class classification
problem involving classes ωi and ωj . The discriminant is
optimized such that:

fi,j(x;ω) =

{
≥ 0 if x ∈ ωi

< 0 if x ∈ ωj

(1)

Figure 1 depicts the approach wherein the database of N =
3 classes is classified into 3 two-class discriminant boundaries.
The posterior probabilities for a particular object x belonging
to a class k is estimated as p(xk), for each of the two-class
classifiers. The final class of an object x is estimated based
on the averages of the posterior probabilities of multiple two-
class estimates and the object is classified into the class with
maximum average posterior probability.

Figure 2 shows the system design to extend three two-
class Random Forest classifiers, trained for two-class pairs
(1) HC-MCI, (2) AD-MCI and (3) AD-HC, to form a three-
class classifier, which provides an estimate for a particular test
utterance as belonging one of the three classes HC, MCI or
AD.

Fig. 2: Proposed system to extend 3 two-class classifiers into three-
class classifier

Consider a patient utterance s with N segments such that s =
cocatenation(s1, s2 . . . sN ). Let the classifiers HC-MCI, AD-
MCI and AD-HC be denoted as 1, 2 and 3 respectively and the
posterior probabilities be denoted as p<class><classifierID>
where class would be HC, MCI or AD and classifier ID would
1, 2 or 3. The posterior probabilities for each utterance s as
well as the individual segments sn are obtained from the two-
class classifiers 1, 2 and 3 and are averaged as shown below.

1) pHC = 〈pHC1, pHC3〉
2) pMCI = 〈pMCI1, pMCI2〉
3) pAD = 〈pAD2, pAD3〉

Where the operation 〈x, y〉 computes the average of x and y.
The class decision for s is made on the basis of
maximum(pHC, pMCI, pAD). A similar process is carried
out for each of the segments sn and a class decision is made
for each segment as sn ∈ {HC,MCI,AD}. Overall class
descision for an utterance s is made using the individual
segment class decision as shown below:

s ∈ argmax(nHC , nMCI , nAD) (2)

where (nHC + nMCI + nAD = N)

III. EXPERIMENTAL SETUP

A. Data

Pitt corpus [14] from the DementiaBank data set, collected
at University of Pittsburgh School of Medicine was used. It
comprises clinician-patient interviews in the form of audio,
manual transcripts and subjective assessment of the patient’s
cognitive state as a longitudinal study over the span of four
years. Data corresponds to four different linguistic-cognition
tasks namely, picture description, fluency, recall and sentence
construction. In this work we use the audio, transcription and
subjective assessment from the picture description task, which
is a verbal description of the Boston Cookie Theft picture.
It was recorded from people with different types of dementia
with an age range from 49 to 90 years as well as from healthy
(HC) subjects with an age range from 46 to 81 years. During
the interviews, patients were asked to discuss everything they
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TABLE I: Top 15 Features selected - Concatenated utterances

AD-HC AD-MCI HC-MCI
F0env_sma_nnz mfcc_sma_de_de[7]_qregerrA pcm_fftMag_spectralRollOff90.0_sma_percentile98.0

mfcc_sma_de_de[7]_qregerrA mfcc_sma_de_de[7]_qregerrQ pcm_fftMag_spectralRollOff90.0_sma_percentile95.0
mfcc_sma_de_de[10]_numPeaks mfcc_sma_de_de[11]_qregerrQ pcm_fftMag_spectralMaxPos_sma_range

pcm_fftMag_spectralRollOff90.0_sma_percentile95.0 mfcc_sma_de_de[8]_qregerrQ pcm_fftMag_spectralRollOff90.0_sma_quartile3
mfcc_sma[0]_meanPeakDist mfcc_sma_de[11]_qregerrA pcm_fftMag_spectralMaxPos_sma_de_range

mfcc_sma_de[0]_kurtosis pcm_LOGenergy_sma_nnz pcm_fftMag_spectralMinPos_sma_percentile98.0
mfcc_sma_de_de[0]_zcr mfcc_sma_de_de[6]_numPeaks pcm_fftMag_spectralMaxPos_sma_de_minameandist

mfcc_sma_de[0]_meanPeakDist pcm_fftMag_spectralRollOff90.0_sma_range pcm_fftMag_spectralMaxPos_sma_percentile98.0
pcm_fftMag_spectralRollOff90.0_sma_percentile98.0 pcm_fftMag_spectralRollOff90.0_sma_percentile98.0 pcm_fftMag_spectralMaxPos_sma_de_maxameandist

pcm_fftMag_melspec_sma[4]_linregc1 pcm_fftMag_spectralMaxPos_sma_de_range pcm_fftMag_spectralMinPos_sma_percentile95.0
F0_sma_linregc1 pcm_fftMag_melspec_sma[22]_linregerrQ mfcc_sma[12]_minameandist

F0env_sma_linregc2 pcm_fftMag_melspec_sma[22]_variance pcm_LOGenergy_sma_minameandist
F0_sma_de_qregc2 pcm_fftMag_spectralMaxPos_sma_range pcm_fftMag_spectralRollOff90.0_sma_de_minameandist

voiceProb_sma_de_de_stddev pcm_fftMag_spectralRollOff75.0_sma_de_range pcm_fftMag_spectralRollOff90.0_sma_range

TABLE II: Top 15 Features selected - Segmental utterances

AD-HC AD-MCI HC-MCI
pcm_LOGenergy_sma_numPeaks pcm_fftMag_melspec_sma[25]_quartile1 pcm_fftMag_spectralRollOff90.0_sma_percentile98.0

mfcc_sma[12]_numPeaks pcm_fftMag_spectralRollOff90.0_sma_percentile98.0 pcm_fftMag_spectralRollOff90.0_sma_percentile95.0
pcm_fftMag_melspec_sma[5]_numPeaks mfcc_sma[12]_numPeaks pcm_fftMag_spectralRollOff90.0_sma_quartile3
pcm_fftMag_melspec_sma[4]_numPeaks pcm_LOGenergy_sma_numPeaks pcm_fftMag_spectralMinPos_sma_percentile98.0
pcm_fftMag_melspec_sma[3]_numPeaks pcm_fftMag_melspec_sma[5]_numPeaks pcm_fftMag_spectralMaxPos_sma_range

pcm_fftMag_fband250-650_sma_numPeaks pcm_fftMag_melspec_sma[25]_quartile2 pcm_fftMag_spectralRollOff90.0_sma_quartile2
pcm_fftMag_fband0-650_sma_numPeaks pcm_fftMag_spectralRollOff90.0_sma_percentile95.0 pcm_fftMag_spectralRollOff90.0_sma_range
pcm_fftMag_melspec_sma[6]_numPeaks pcm_fftMag_melspec_sma[6]_numPeaks pcm_fftMag_melspec_sma[25]_quartile1
pcm_fftMag_melspec_sma[2]_numPeaks pcm_fftMag_fband0-650_sma_numPeaks mfcc_sma[10]_quartile2
pcm_fftMag_melspec_sma[22]_quartile1 pcm_fftMag_melspec_sma[4]_numPeaks mfcc_sma[12]_minameandist
pcm_fftMag_melspec_sma[24]_quartile1 pcm_LOGenergy_sma_de_de_qregerrQ pcm_fftMag_melspec_sma_de_de[1]_skewness
pcm_fftMag_melspec_sma[7]_numPeaks pcm_fftMag_fband250-650_sma_numPeaks pcm_fftMag_fband0-650_sma_numPeaks
pcm_fftMag_melspec_sma[1]_numPeaks pcm_fftMag_melspec_sma[3]_numPeaks pcm_fftMag_melspec_sma[9]_centroid
pcm_fftMag_melspec_sma[20]_quartile1 pcm_fftMag_melspec_sma[7]_numPeaks pcm_fftMag_melspec_sma_de_de[0]_zcr

could see happening in the cookie theft picture. We consider a
sample data with a total of 597 recordings from 97 HC partic-
ipants, 168 AD patients and 19 patients diagnosed with MCI.
For HC and AD participants, recordings from only cookie theft
task was considered, whereas for MCI, recordings from all
except sentence task was considered so as to make up for
the data insufficiency. We use the speaker timing information
provided in the transcripts, to remove the clinician turns from
the recordings, retaining only the participant speech.

We work with two sets of data, namely:
• All the patient turns within a clinician-patient conversa-

tion are concatenated to form one single utterance.
• Each patient turn within a clinician-patient conversation

is segmented and classified as a separate utterance.

B. Feature extraction

The openSMILE toolkit [15] was configured to use the large
openSMILE emotion feature set (emolarge), which gives 6552
acoustic features. Time domain and frequency domain acoustic
descriptors such as signal energy, loudness, MFCC, pitch,
voice quality (jitter, shimmer), spectral shape descriptors and
their statistical functionals such as means, extremes, moments,
segments, percentiles etc. are some of the feature used. This set
of speech features was used as the super set for all 3 two-class
classifiers, namely HC-MCI, AD-MCI and AD-HC as well as
the three-class classifier for HC-MCI-AD classification.

C. Feature selection and Classification

We use the attribute evaluator CfsSubsetEval with the search
method BestFirst specified in the Weka toolkit [16] for feature

selection and the Random Forest classifier with 500 trees was
used along with 10-fold cross validation for classification.
Feature selection process was carried for each of the two-class
classfiers; namely HC-MCI, AD-MCI and AD-HC. Features
that provide the best discrimination between the classes were
selected for each class pair. Similar exercise was conducted
for the three-class classifier as well. The two-class classifiers
were then trained using their respective selected features.
The proposed system uses the posterior probability estimates
provided by each of the two-class classifier for individual
utterances to enable the final class decision as shown in
Figure 2. The two-class, three-class and proposed system
classification results are discussed in the Section IV.

The feature extraction, selection and classfication processes
described above were carried out for both the datasets men-
tioned in Section III-A The top 15 ranked features selected for
each of the two-class classifiers are shown in Tables I and II.
We have retained the openSMILE names of the features for the
sake of reproducibility. For the concatenated utterances, the
AD-HC classifier features comprised MFCC, pitch, spectral
and voice quality-based features while the classifiers AD-MCI
and HC-MCI comprised majorly of spectral features. However,
for segmental utterances spectral features were selected for all
the three classifiers. It can be observed that there are only
a few common features between the two-class classifiers for
both concatenated as well as segmental data sets.

IV. RESULTS AND ANALYSIS

Firstly, we analyze the performance of our system using the
concatenated patient utterances. Next, we use the predicted
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classes of the individual segments within a clinician-patient
conversation in such a way that we classify the entire conver-
sation into the class to which maximum number of segments
have been classified as described in Section II.

We present a comparison between the classification accu-
racies of a three-class Random Forest (RF) classifier and the
proposed system which arrives at a class decision using poste-
rior probability estimates from three two-class classifiers. Post
processing on segment-wise classification showed significant
improvements over concatenated utterance-based classification
at the three-class, individual two-class as well as the final
proposed system with cascaded two-class classifiers.

Table III shows the precision (Pr), recall (Re) and F-score
for a three-class RF classifier designed to classify for HC, MCI
and AD classes using the selected features from the emolarge
superset.

TABLE III: Three-class classification performance

Class Concatenated Segmental
Pr Re F-Score Pr Re F-Score

HC 76.8 91.7 83.6 76.8 95.5 85.1
MCI 80.6 43.1 56.2 97.8 38.8 55.6
AD 80.9 83.1 82.0 83.5 87.1 85.2

Overall 79.4 72.6 73.9 86.0 73.8 75.3

It can be seen from the Table III that although the selected
features provide good discrimination between AD and HC,
the same features do not fare well for MCI. However, the
classification of segmented patient turns followed by post
processing performs better than the concatenated patient turns.

Table IV shows the precision, recall and F-score for the
three individual two-class RF classifiers shown in Figure 2
using the selected features from the emolarge superset. In

TABLE IV: Two-class classification performance

Class Concatenated Segmental
Pr Re F-Score Pr Re F-Score

HC 85.3 96.3 90.5 83.2 100.0 90.8
MCI 89.4 65.5 75.6 100.0 57.8 73.2

Overall 87.4 80.9 83.1 91.6 79.0 82.0
AD 82.5 94.1 87.9 85.3 100.0 92.1
MCI 81.3 56.0 66.3 100.0 62.1 76.6

Overall 81.9 75.1 77.1 92.6 81.0 84.3
AD 93.2 85.9 89.4 95.8 90.1 92.8
HC 86.3 93.4 89.7 89.9 95.7 92.7

Overall 89.8 89.7 89.6 92.9 92.9 92.8

each of the individual classifiers, the F-score for the class
MCI is low as compared to AD and HC, however, it shows
significant improvements of the order of 20% over the three
class classifier. This indicates that the feature selection process
for a three-class classifier to distinguish between the three
classes HC, MCI and AD is non-trivial. In order to overcome
this, we propose to use the posterior probabilities of the two-
class classifiers to arrive at a class decision for an utterance.

Additionally, we apply the cascaded two-class to three-class
to both concatenated and segmental utterances as described in
Section II. Final decision regarding the class of an utterance
is computed as shown in Figure 2 and is shown in Table V.

TABLE V: Proposed method three-class classification performance 1

Class Concatenated Segmental
Pr Re F-Score Pr Re F-Score

HC 81.9 95.5 88.2 82.6 98.3 89.8
MCI 79.5 53.4 63.9 100.0 48.3 65.1
AD 87.7 87.1 87.4 88.5 93.3 90.8

Overall 83.1 78.7 79.8 90.4 80.0 81.9

We observe that the proposed system performs with a 9%
improvement on both the concatenated as well as segmental
utterances as compared to the three-class classifiers for MCI
utterances, 6% and 9% improvement for AD and HC classes
respectively and with an overall improvement of 8%.

V. CONCLUSION AND FUTURE WORK

Alzheimer’s disease (AD) is a slow progressive brain dis-
ease that begins well before clinical symptoms emerge. Timely
diagnosis of AD is imperative to provide in-time treatment
be it medication or therapy. Also, in the initial stages the
progression of the disease can be prolonged in some cases.
In this work, we use speech processing and machine learning
techniques to automatically classify speech into healthy (HC),
with mild cognitive impairment (MCI) or with Alzheimer’s
disease (AD). Only acoustic parameters are used for this
purpose making this a language independent approach. Speech
parameters provided by the emorlarge feature set have been
used. The performance of a three class Random Forest
classifier is compared with our proposed system comprising
multiple two-class Random Forest classifiers cascaded to form
a three class classifier, wherein a combination of approximate
posterior probabilities is used to obtain a final class probability
estimate. Two methods of classification have been explored,
(a) Speech turns belonging to the patient are concatenated
and classified as a whole. (b) By treating each patient turn
within a clinician-patient conversation as a single utterance and
classified separately, the complete utterance is then classified
into the class to which maximum number of turns belong.
We evaluate our work using dementia and healthy speech
from Pitt corpus from DementiaBank database. This system
shows an absolute improvement of 8% over the three class
classifier. Improvement in F-score was seen for each class
with MCI improving the most. Future work would involve an
investigation into speech features such as linguistic features to
improve the classification.
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