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Abstract—Hand gesture recognition systems relying on biosig-
nal data exclusively are mandatory for a variety of applications.
In general, these systems have to meet requirements such as af-
fordability, reliability, and mobility. In general, surface electrodes
are used to obtain signals caused by the contraction of underlying
muscles of the forearm. These data are then used to decode hand
gestures. In this work, we evaluate the possibility of replacing the
electrodes by magnetometers that are cheap and can be easily
implemented in mobile devices. We propose an inhomogeneously
stacked recurrent neural network for classifying hand gestures
given magnetometer data. The experiments reveal that the
comparably small network significantly outperforms state-of-the-
art hand gesture recognition systems relying on multi-modal
data. Furthermore, the proposed network requires significantly
shorter windows and enables a quickly responding classification
system. Also, the experiments show that the performance of the
proposed system does not vary much between subjects and works
outstandingly for amputees.

Index Terms—hand movement classification, magnetometer,
recurrent neural network, hand prosthesis

I. INTRODUCTION

In recent years, the interactions between humans and com-
puters or robots have become more and more important in both
the industry as well as the private life. Consequently, the field
of human-machine-interfaces (HMI) has gained increasing
interest. Often humans can interact with a machine in a
very intuitive fashion via hand gestures [1], [2]. To enable
such interaction, a robust hand gesture recognition system is
required. To this end, typically, data gloves and camera based
hand tracking systems are used. However, both techniques
often have significant disadvantages such as high cost, the
lack of robustness and accuracy, as well as lack of mobility
and availability. Furthermore, these systems cannot be used by
people with an amputation or a paralysis of the hand. Thus,
they are not suitable in the medical field where such systems
are required, e.g., to control hand prosthesis [3] or exoskele-
tons [4], [5]. Hand gesture recognition systems for medical
applications usually rely on surface electromyography (sEMG)
signals only. However, sEMG systems are complicated and
expensive. Consequently, a cheap but reliable hand gesture
recognition system that can be included in embedded/mobile
systems would be desirable. Moreover, such a system should
be able to recognize a vast variety of different hand gestures

Fig. 1. Comparison of the standard classification approach (above) and the
classification with an inhomogeneously stacked RNN (below).

with small time delay and to detect even intentional hand
movements of amputees.

In this work, we evaluate the possibility of solely using
magnetometer data for classifying hand gestures. Magnetome-
ters are cheap and can be easily integrated into an embedded
system. Furthermore, they can be placed around the forearm
like electrodes to measure changes in the magnetic field.

Considering sEMG signals, the most hand gesture recog-
nition approaches follow a standard classification pipeline,
i.e., the extraction of hand-crafted features followed by the
classification with a conventional classifier such as a support
vector machine or a random forest [6]–[8]. Lately, more
enhanced techniques have been used such as deep learning
including convolutional neural networks (CNNs) [9], [10] and
recurrent neural networks (RNNs) [11], [12]. CNNs are
designed to learn a feature extractor and a classifier within
one network in a data-driven fashion. Consequently, they are
suitable to avoid a hand-crafted feature extraction and enable
the detection of hand gestures from raw data. For sEMG data,
end-to-end trained CNNs have been identified as promising
approaches for hand gesture classification systems [9], [10].
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Fig. 2. Illustration of an LSTM cell.

Following the success of CNNs, RNNs have been shown to
hold a great potential for recognizing hand gestures given
sEMG signals [11], [12]. The main advantage of RNNs is that
they can make use of the sequential nature of signals. They
have been reported to achieve state-of-the-art performance
with comparatively small network architectures.

To leverage the respective advantages of CNNs and RNNs
within one network, we propose an inhomogeneously stacked
RNN consisting of standard long short-term memory (LSTM)
cells [13] and convolutional LSTM (ConvLSTM) cells [14].
This network architecture enables us to classify hand gestures
based on very short windows (5 ms), to avoid large delays and
to update the hand gesture classification quickly. In Fig. 1 the
proposed method is compared with a standard classification
system which usually requires at least 200 ms long windows.

To study whether hand gestures can be decoded from
data of multiple tri-axial magnetometers placed around the
forearm using this inhomogeneously stacked RNN we con-
ducted experiments on a publicly available database containing
data of both amputees and able-bodied subjects. The results
indicate that this specialized network architecture is efficient
for classifying hand gestures from magnetometer data. We
outperform state-of-the-art systems significantly.

II. INHOMOGENEOUSLY STACKED RNN ARCHITECTURE

As LSTM cells overcome the problem of vanishing gra-
dients, they can capture long-term dependencies very well.
Therefore, they are suitable for the classification of sequential
data. ConvLSTM cells combine the feature extraction ability
of CNNs with the sequence processing ability of RNNs. For
these reasons, in this work, we use both standard LSTM cells
and ConvLSTM cells. In the following sections, we elaborate
the LSTM cell and the ConvLSTM cell. The former is the
center of the network while the later is the key element of
the initial feature extraction part of the network’s architecture.
Finally, the whole network architecture is described in detail.

A. Standard LSTM

The general principle of an LSTM cell is illustrated in
Fig. 2. The corresponding hidden layers H are nonlinear
transformations given by

(ht, ct) = H(xt,ht−1, ct−1), (1)

where t is the current time step regarding the given input
sequence, h the output vector, c the cell state, and x the input
vector. At each time step, the cell state is updated by

ct = ft � ct−1 + it � tanh (Wxcxt + Whcht−1 + bc) (2)

with � being the Hadamard product, the input gate defined as

it = σ (Wxixt + Whiht−1 + bi) , (3)

and the forget gate being

ft = σ (Wxfxt + Whfht−1 + bf ) . (4)

All trainable weight matrices are denoted by W· while the
trainable bias vectors are represented by b·. The actual output
of an LSTM cell is calculated via

ht = ot � tanh (ct) (5)

with o being the output gate which is defined as

ot = σ (Wxoxt + Whoht−1 + bo) . (6)

B. ConvLSTM with Specialized Padding

The proposed network is used to recognize hand gestures in
a sequence of small windows containing data of multiple tri-
axial magnetometers placed on the subject’s arm. In order to
exploit the spatiotemporal structure of the magnetometer data,
ConvLSTM cells are used. A ConvLSTM cell takes multi-
dimensional data as input and allows to incorporate the spatial
relations between sensors into the feature extraction. The
spatial and temporal information are exploited by convolution.
The ConvLSTM’s hidden layer Hconv is given by

(Ht,Ct) = Hconv(Xt,Ht−1,Ct−1) (7)

and can be described by the following five equations:

Ct =It � tanh
(
WXC ∗Xt + WHC ∗Ht−1 + BC

)
+ Ft �Ct−1,

(8)

It = σ
(
WXI ∗Xt + WHI ∗Ht−1 + BI

)
, (9)

Ft = σ
(
WXF ∗Xt + WHF ∗Ht−1 + BF

)
, (10)

Ot = σ
(
WXO ∗Xt + WHO ∗ ht−1 + BO

)
, (11)

Ht = Ot � tanh
(
Ct

)
. (12)

In the above equations, ∗ denotes the convolution operation
and all trainable filter kernels and bias matrices are denoted
by W· and B·, respectively.

In ConvLSTM cells, zero padding is usually used to avoid
shrinking of the convolution results. Since we process small
matrices, the kind of padding is important. The electrodes are
padded in a cyclic fashion. For the time dimension of the input
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Fig. 3. Illustration of the inhomogeneously stacked RNN enrolled over time in training configuration. The first ConvLSTM cell is followed by a two-dimensional
max-pooling layer (MaxPool). The actual hand gesture classification is accomplished using a fully-connected layer (FC).

data a symmetric padding is used. Consequently, the padded
input for a 3× 3 convolution kernel has the form:

x1,12 x1,1 x1,2 x1,3 · · · x1,12 x1,1
x1,12 x1,1 x1,2 x1,3 · · · x1,12 x1,1
x2,12 x2,1 x2,2 x2,3 · · · x2,12 x2,1

...
...

...
...

. . .
...

...
x10,12 x10,1 x10,2 x10,3 · · · x10,12 x10,12
x10,12 x10,1 x10,2 x10,3 · · · x10,12 x10,12


.

C. Network Architecture

The presented architecture is an inhomogeneously stacked
RNN comprised of three RNN cells and a fully-connected
layer as depicted in Fig. 3. The first layer is a ConvLSTM
cell taking a sequence of three-dimensional matrices as input.
Thereby, the first dimension corresponds to the samples of
the windows, the second to the signals from the different
magnetometers, and the third one to the three axes of the
magnetometers. Within this ConvLSTM cell, 24 filter kernels
with a kernel size of 3 × 3 are learned. In order to reduce
complexity and to add nonlinearity to the network, the output
of the first cell is fed to a max-pooling layer, where a kernel
of size 2× 2 and strides of 2 are used. This pooling layer is
followed by another ConvLSTM cell associated with 24 filter
kernels of size 3×3. We implement a residual connection [15]
by adding the output of the max-pooling layer to the output
of the second ConvLSTM cell. The result of the summation
is transformed into a vector and fed to a standard LSTM cell
with a state size of 256. To perform the final classification,
the last layer in the network is a fully-connected layer with a
softmax activation function.

III. NETWORK TRAINING AND VALIDATION

In order to have a sufficient number of training examples,
the training data were augmented using overlapping sequences
as can be seen in Fig. 4(a). Each sequence was subdivided
into T windows of 5 ms duration. For each training example
sequence, a single label was predicted by the network. To
calculate the loss needed for the optimization of the network
parameters, only the classification of the last window of the

(a)

(b)

Fig. 4. Illustration of the training and test data generation. In (a) the extraction
of overlapping sequences for the training procedure is illustrated. During
training, only the hand gesture corresponding to the final window of the
training example sequence is predicted. In (b) the test case is shown, where
for each window a hand gesture is predicted.

training sequence was taken into account. As a loss function
the cross-entropy was chosen which is given by

E (Θ|X,yT ) = −yT log (ŷT (Θ|X)) , (13)

where ŷT denotes the network’s classification result of the
last window T and yT the ground-truth corresponding to the
final time step T represented in a one-hot encoded vector.
The parameters of the RNN are given by Θ and the input
sequence is represented by X . In addition, we applied a `2-
norm regularization R`2 to the convolution kernels of the two
ConvLSTM layers to prohibit the uncontrolled growth of their
weights. The overall loss function reads

C (Θ|X,yT ) = E (Θ|X,yT ) + αR`2

(
ΘKernels

)
, (14)
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TABLE I
RESULTS FOR THE INHOMOGENEOUSLY STACKED RNN. THE ACHIEVED
RESULTS ARE COMPARED WITH THOSE OF STATE-OF-THE-ART METHODS

DESCRIBED IN [18] THAT RELY ON ALL IMU MODALITIES AND ON A
COMBINATION OF IMU AND SEMG SIGNALS, RESPECTIVELY. IN

ADDITION, THE PERFORMANCE OF AN RNN CONSISTING OF A SINGLE
LSTM CELL WITH A STATE SIZE OF 256 IS SHOWN.

Modality / Method able-bodied amputated

IMU / [18] 81.7% 77.7%
IMU & sEMG / [18] 82.7% 77.8%
Magnetometer / single LSTM cell 86.5% 82.6%
Magnetometer / proposed RNN 89.2% 83.1%

where α represents a weighting factor and ΘKernels the
convolution kernels of the ConvLSTMs.

For training, we chose sequences of 1000 ms and a window
size of 5 ms. As optimizer we used the Adam [16]. Further-
more, we applied dropout [17] with a dropout probability of
50 % and used mini-batch training with a batch size of 200.

Unlike for training, during network testing, the test exam-
ples were not subdivided into shorter sequences of fixed length
but processed as entire sequences (see Fig. 4(b)). Conse-
quently, the sequence length varied for the test examples. In the
test case, the network was used to predict the hand movement
category for each window of the presented sequence. We
chose this setting for evaluating the network’s performance
to keep it as similar as possible to the actual application of a
hand gesture classification system. In such a system, from the
moment it is deployed, the classifier has to recognize the hand
gestures in each window (of a steadily growing sequence). The
performance of the network was evaluated using the accuracy
calculated by comparing the predicted class of each window
with its corresponding ground-truth.

IV. EXPERIMENTS

A. Database

To evaluate the possibility of recognizing hand gestures
from magnetometer data and to validate the inhomogeneously
stacked RNN, experiments on the database DB7 of the Ninapro
project were conducted [18]. This is a publicly available
database that includes data of sEMG and magnetometer. Using
this database allows us to compare the performance of the
proposed system with other approaches relying, e.g., on sEMG
or inertial measurement unit (IMU) signals.

The database contains recordings of 20 able-bodied subjects
and 2 amputees. During the recording sessions, the subjects
were asked to perform 40 (excluding rest position) hand
gestures by presenting them on a screen. The subjects had
to repeat every hand movement six times. Between the repeti-
tions, the subjects were asked to place their hand in a resting
position. During the experiments, the Delsys® Trigno™IM
Wireless System was used for recording the signals. The
system’s sensors included both an electrode and an IMU. The
sEMG data acquired by the electrodes were sampled with
2 kHz while the IMU data were recorded with a sampling
frequency of 128 Hz. To meet the sampling frequency of the

DB7
(able-bodied)

DB7
(amputees)

70

80
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100

Data splitting

A
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Fig. 5. Boxplot of the obtained results.

sEMG signals, the IMU data were upsampled. The IMU in
the sensor includes a tri-axial magnetometer whose signals
are used in this work.

B. Data Preprocessing

For comparability with other publications, we followed
the suggestions in [18] regarding the generation of training
and test sets. In order to prepare the magnetometer data for
classification with the proposed RNN network, the data were
preprocessed by performing a channel-wise normalization of
the magnetometer data. To this end, the mean and the standard
deviation were calculated for each axis of the magnetometer
individually. Each channel was normalized by subtracting its
corresponding mean and dividing it by the standard deviation
in order to achieve zero mean and unit standard deviation.
Note that all necessary statistics were obtained using training
data only. As mentioned previously, for network training,
overlapping fixed-length sequences of 5 ms long windows
were generated. For the test case, sequences of different length
were produced.

C. Results

For the purpose of evaluation, we split the subjects of DB7
into two groups: the able-bodied subjects and the amputees.
For each group we report the median accuracy achieved across
all subjects of the group.

In Table I the results of the proposed network are reported
and compared with results for the state-of-the-art methods
that use signals of multiple modalities and a simple RNN.
The state-of-the-art methods follow the standard classifica-
tion pipeline featuring hand-crafted features and a linear
discriminant analysis classifier. The RNN is similar to the
inhomogeneously stacked RNN but has a single LSTM cell
with a state size of 256. As can be seen, the proposed approach
outperforms the IMU based approach [18] by 7.5 % and
5.4 % for the amputees and able-bodied subjects, respectively.
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This is even more remarkable knowing that this approach not
only takes the magnetometer but also the gyroscope and the
accelerometer signals into account and, moreover, requires
256 ms instead of 5 ms long windows. Note, that the
results obtained on magnetometer data by [18] are even worse.
Besides, the proposed approach even outperforms the IMU
and sEMG based state-of-the-art classification system—having
similar properties to the proposed approach—significantly by
6.5 % and 5.3 % for able-bodied and amputated subjects,
respectively. The state-of-the-art system relying on sEMG data
exclusively is even surpassed by about 29 % for able-bodied
subjects and 40 % for the amputees. As can be seen in the
boxplot in Fig. 5, the performance of the proposed system
does vary much across subjects. In contrast, the performance
of state-of-the-art hand gesture classification systems appears
to depend more on the individual subject. The individual
classification accuracy for several subjects is roughly 20 %
lower then the median accuracy calculated across all subjects.
Consequently, our approach is potentially more robust to inter-
individual differences.

By considering the results of the RNN based on a single
LSTM cell and the ones achieved by the inhomogeneously
stacked RNN it becomes clear that RNNs are highly suitable
for recognising hand gestures based on analysing magnetome-
ter data. Both networks can reliably detect hand movements
even on the small 5 ms windows. However, the results
show that the more complex RNN including two different
kinds of RNN cells for feature extraction and further analysis
outperforms a simple RNN.

The presented results indicate the possibility of replacing
the expensive sEMG electrodes by magnetometers or at least
adding magnetometers and try to reduce the number of elec-
trodes. However, the database used in this experiments does
not include recordings of multiple days, consequently it has
to be studied whether a system relying on magnetometer data
and an RNN based classifier performs similarly well in such
settings.

Overall, the results reveal that the proposed inhomoge-
neously stacked RNN hold promise in classifying a vast variety
of different hand gestures from magnetometer data with good
robustness and accuracy. Furthermore, the results indicate that
magnetometers capture similar or even more information as
electrodes for hand gesture recognition.

V. CONCLUSIONS

In this work, we investigated whether hand gestures can
be recognized using the magnetometer signals with an RNN.
We proposed a network architecture containing ConvLSTM
and LSTM cells allowing us to exploit the temporal and
the spatial information within the magnetometer data. The
proposed approach leads to significantly better performance
than state-of-the-art systems based on multi-modal data while
requiring windows that have a fraction of the length. The
classification accuracy is improved by more than 5 % for both
able-bodied subjects and amputees while using 5 ms long
windows. Furthermore, the experimental results reveal that

the proposed system is comparably robust to inter-individual
variance and works well for all individuals. The promising
results indicate the possibility of replacing the expensive
electrodes by magnetometers since they are able to capture
information useful for hand gesture recognition. Furthermore,
adding magnetometers would be a cheap solution for acquiring
more data in a hand gesture recognition system to achieve a
more robust hand gesture classification.
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