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Abstract—Multi-microphone signal processing is becoming
increasingly popular in applications such as distant speech
recognition or communication in adverse environments. To de-
ploy source localization or signal enhancement algorithms like
beamforming the locations of the microphones must be known.
One well-studied approach to retrieve the relative positions of
the microphones is based on time-difference-of-arrival (TDoA)
measurements. However, current approaches are restricted to
scenarios with a large number of sources or specific coherence
assumptions. In this paper a non-iterative approach based on
orthogonal geometric projection (OGP), which is able to perform
a blind self-localization of the array in 2D with only two sources
at arbitrary positions, is presented and extended to estimate
a 3D array shape with only three sources. Furthermore, an
efficient method for outlier correction in the pairwise distance
(PD) estimates is proposed, that significantly reduces the position
error.

Index Terms—array shape estimation, self-localization, geom-
etry calibration, time-difference-of-arrival, acoustic sensor net-
works

I. INTRODUCTION

In scenarios where distant speech acquisition is required, ad-
hoc microphone arrays and self-calibrating multi-microphone
devices become increasingly popular. The performance of most
signal enhancement algorithms used in that context relies on
an accurate estimation of the positions of the microphones and
drops if the estimates are erroneous. There exist numerous
approaches in literature to retrieve the microphone positions
blindly from acoustic sources. They can be categorized by
the localization scenario that they are designed for and the
estimation method they use [1]. One popular method measures
the coherence between the signals of two microphones to
estimate the pairwise distance (PD) between them [2], [3]. Its
applicability is restricted to environments where the prevailing
signal coherence matches a specific model, for example, that
of an ideal diffuse sound field. Probably the most widely
used method measures the time-difference-of-arrival (TDoA)
between the signals recorded at two microphones [1], [4]–[7].
Using the speed of sound the PDs between the microphones can
be estimated, if the source is located in the endfire direction of
two microphones. For both methods classical multidimensional
scaling (CMDS) is usually used to retrieve a coordinate
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representation of the microphone locations from the estimated
PDs [2], [6]. Alternatively, iterative optimization methods
can be used to find a set of microphone positions that best
explains the observed TDoA measurements [8], [9]. However,
the latter usually need careful initialization to converge to the
correct solution [1], [10]. Recently, closed-form solutions for
the more general problem of joint source and microphone
localization using the low rank property of the matrix of TDoA
measurements have been proposed [11]–[13]. They provide
attractive results if constraints on the minimum number of
microphones M and sources S are fulfilled. For a small number
of sources and microphones (e.g. M+S<13 for 3D, M+S<11
for 2D) they fail to provide a solution for the array geometry.
For calibrating a microphone array of arbitrary shape in 2D,
[14] shows that the minimum number of microphones and
sources is M = 3 and S = 3, if an arbitrarily low error is
desired.

In this contribution we achieve a further reduction of the
number of required sources, by imposing a regularity constraint
on the array shape and derive a new non-iterative method to
calibrate a 2D array with M=3 and S=2 and a 3D array with
M = 4 and S= 3 only. After that we discuss the robustness
of the method if the regularity constraint is violated. The
method is based on an orthogonal geometric projection, that
only depends on the relative angle between two sources. The
main contribution is the estimation of this relative angle by
measuring the similarity of the vector of TDoA measurements
obtained from each source. Orthogonal projection techniques
have been proposed for many applications such as direction-
of-arrival estimation (e.g. MUSIC [15]) and subspace-based
auto-calibration of microphone arrays [16]. However, in our
contribution the projection is applied to TDoA measurements
and maps them to microphone coordinates.

In practical applications one major source of errors in TDoA
measurements is caused by reverberation. Acoustic reflections
add additional peaks to the cross-correlation function that can
wrongly be considered as the direct path peak, especially if
noise is present. If a wrong peak is selected in the cross-
correlation function, the resulting error of the TDoA estimate
can be very high with a significant impact on the accuracy
of the estimated microphone positions. To tackle this error
source algorithms for matrix completion were proposed [17],
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[18]. In this paper a simpler method for outlier detection and
correction based on the zero-sum condition [19] is presented
in Sec. III-B.

II. SIGNAL MODEL AND PAIRWISE DISTANCE ESTIMATION

In a reverberant environment the signal u(l)
i (t) at microphone

i, which originates from the signal sl(t) at source l, can be
modeled by convolving the source signal with the impulse
response hil(t) between the source and the microphone, where
t is the time index. The additive noise v(l)

i (t) is present at the
i-th microphone. The resulting signal model is as follows

u
(l)
i (t) = hil(t) ∗ sl(t) + v

(l)
i (t), (1)

with i = 1, 2, ...,M and l = 1, 2, ..., S, where M and S is
the total number of microphones and sources, respectively. It
is assumed that only one source is active at the same time
and that all sources are located in the far-field of the array.
Furthermore, it is assumed that all microphone signals are
sampled with a synchronized clock.

To estimate the TDoA T̂
(l)
ij between two microphones i and

j with respect to source l the generalized cross-correlation
with phase transform (GCC-PHAT) is used according to

T̂
(l)
ij = arg max

T

1

2π

π∫
−π

Φ
u
(l)
i u

(l)
j

(Ω)

|Φ
u
(l)
i u

(l)
j

(Ω)|
ejΩT dΩ, (2)

where Φ
u
(l)
i u

(l)
j

(Ω) is the cross-power spectral density between

u
(l)
i and u(l)

j and Ω is the normalized radian frequency. From
(2) a signed estimate for the PD between microphones i and j
can be calculated via d̂(l)

ij = c · T̂ (l)
ij , where c is the speed of

sound in air.

III. ORTHOGONAL GEOMETRIC PROJECTION

Our proposed approach for array shape estimation is based
on two steps. At first we reduce the problem of array shape
estimation to the estimation of the angle between two sources.
This is done by a transformation of the coordinate system
which we call orthogonal geometric projection (OGP). After
that we introduce a new method to estimate the angle between
two sources without knowledge of the microphone positions
in Sec. III-A. We show that the method delivers exact results
for array shapes forming a regular polygon and discuss the
robustness of the method for irregular arrays.

The idea behind the OGP approach is that the measured PDs
between each microphone and a reference microphone can be
interpreted as an orthogonal projection of the true coordinates
of the microphones on a line connecting the array center (×)
with one source, see Fig. 1. Any microphone can be chosen as
the reference, i.e. it is located at the origin of the coordinate
system. This projection cannot be inverted directly, because
the corresponding projection matrix is singular. Therefore, we
need a second source to span a 2D space and retrieve the
coordinates of a planar array. Consequently, we need three
sources for estimating the shape of a 3D array.

To retrieve an estimate m̂ir for the coordinates of micro-
phone i relative to a fixed but arbitrary reference microphone

×
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ψ12
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Fig. 1. Orthogonal projection of the positions mi of microphones i = 1, ..., 4

to the relative PD estimates d̂(1)ir and d̂(2)ir generated by sources 1 and 2 for
the 2D case. × indicates the array center.

r from the PD estimates d̂(1)
ir and d̂(2)

ir , the angle ψ12 between
the sources 1 and 2 must be known. For the special case
of ψ12 = 90◦, the PD estimates can directly be used as an
estimate for the relative positions:

m̂ir = [xir, yir]
T

=
[
d̂

(1)
ir , d̂

(2)
ir

]T
, for ψ12 = 90◦ (3)

For ψ12 6= 90◦, the positions of the microphones calculated
via (3) are skewed versions m̂′ir of the true coordinates
mir, which can be concluded from Fig. 1. To retrieve an
unskewed estimate m̂ir, a matrix operation can be applied
to m̂′ir. The matrix is constructed from the normal vectors
pointing from the center of the array to each source. Because we
are only interested in the relative angle between the sources,
we can assume without loss of generality that the normal
vector n1 pointing to the first source lies in the x-axis, i.e.
n1 = [n1x, n1y]T = [1, 0]T . Furthermore we can assume with-
out loss of generality that the normal vector pointing towards
the second source lies in the xy-plane. Using the properties
||n2||= 1 and nT1 n2 = cos (ψ12) this normal vector can be
constructed as n2 = [n2x, n2y]T = [cos (ψ12) , sin (ψ12)]T .
Now we have all elements to formulate the projection matrix
for the 2D case as

P2D =

(
n1x n1y

n2x n2y

)
. (4)

For the 3D case the dimension of m̂′ir is extended to
m̂′ir = [xir, yir, zir]

T = [d̂
(1)
ir , d̂

(2)
ir , d̂

(3)
ir ]T . Furthermore, with

a third source, we can define three relative source angles
ψ12, ψ13 and ψ23. Using the properties nT1 n3 = cos(ψ13),
nT2 n3 = cos(ψ23) and ||n3||= 1 the normal vector n3 =
[n3x, n3y, n3z]

T pointing towards the third source can be
constructed as

n3x = cos (ψ13) (5)

n3y =
cos (ψ23)− cos (ψ13) cos (ψ12)

sin (ψ12)
(6)

n3z =
√

1− n2
3x − n2

3y. (7)

The projection matrix for the 3D case is defined as

P3D =

n1x n1y 0
n2x n2y 0
n3x n3y n3z

 . (8)

Applying the inverse of the projection matrix to the skewed
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microphone positions results in the final position estimate

m̂ir = P−1
dimm̂′ir, dim ∈ {2D, 3D}. (9)

A. Estimation of the angle between sources

In general the angle ψl1l2 between two sources l1 and l2 is
not known and has to be estimated. No direct information on
the angle between the axes in Fig. 1 is available. Therefore,
we exploit a relation between the PD estimates and the relative
source angle for array shapes forming a regular polygon. After
that, we show the robustness of this relation to irregular shapes.
The new method measures the similarity between all PD
estimates pl1 and pl2 of sources l1 and l2 with the inner
product. The inner product is then interpreted as an estimate
ψ̂l1l2 for the relative angle ψl1l2 between the sources according
to

ψ̂l1l2 = arccos

(
pTl1pl2

||pl1 || ||pl2 ||

)
, (10)

where pq = [d̂
(q)
11 , d̂

(q)
21 , ..., d̂

(q)
ij , ..., d̂

(q)
MM ]T and q ∈ {l1, l2}.

The estimated PDs d̂(q)
ij can be expressed by the true PDs dij

with d̂(q)
ij = dij cos (θq − αij), where θq is the angle between

source q and the horizontal axis and αij is the angle between
the edge connecting mi and mj and the horizontal axis. Using
basic trigonometric relations (10) can be expressed as

ψ̂l1l2 = arccos

(
cos(ψl1l2)C0 + C√
C0 +Al1

√
C0 +Al2

)
, (11)

with

C0 =

M∑
i=1

M∑
j=1

d2
ij , C =

M∑
i=1

M∑
j=1

d2
ij cos(θl1+θl2−2αij), (12)

and for q ∈ {l1, l2}, Aq =
M∑
i=1

M∑
j=1

d2
ij cos(2θq−2αij). (13)

For regular polygons it can be shown straightforwardly that the
sum of cosines in (12) and (13) evaluates to zero. Therefore,
Al1,l2 = C = 0 for regular polygons. Then, it follows with
(11) that ψ̂l1l2 = ψl1l2 .

If the array shape is not regular the estimation according
to (10) introduces an error. To give a quantitative impression
of the error in estimating ψ for irregular shapes, a simulation
with an array of four microphones and two sources was carried
out. The irregularity of the array shape is varied by adding
Gaussian noise to the coordinates of the square array shape.
The estimation of ψ12 is then carried out for 1000 realizations
of the irregular shape. In Fig. 2 these realizations of the
irregular array are shown for a standard deviation of the noise
of σnoise = 0.1(d0/6) and σnoise = (d0/6), where d0 = 60 cm
is the side length of the undisturbed array. The scaling by d0/6
ensures that 99.7 % (3σnoise) of the disturbed coordinates lie
inside a radius of d0/2 around the undisturbed corners. This
defines a meaningful maximum amount of irregularity, because
a change of the orientation of the square, i.e. a swap of the
corners, is prevented. For the evaluation of the performance we
calculate the absolute relative error of the angle estimation as
ψerr, rel = |(ψ12 − ψ̂12)/ψ12|. Furthermore, we investigate the
effect of an erroneous angle estimation on the estimate for the
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Fig. 2. Simulated arrays of four microphones with different amount of
irregularity. The regular square is highlighted in red.
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Fig. 3. Relative error ψerr, rel of the angle estimation (a) and RMSE of the
position estimate (b) for ψ12 = {90◦, 60◦, 30◦}. Solid and dashed lines
indicate average results for OGP and CMDS, respectively. Vertical error bars
indicate ± one standard deviation over 1000 trials.

microphone positions calculated by (9). The performance of the
position estimation is evaluated with the Root-Mean-Squared-
Error (RMSE) between the true (mi) and the estimated (m̂i)
microphone positions. For the RMSE we also present results
of a CMDS approach, that uses the same PD estimates as the
OGP approach but does not involve an angle estimation. For
each PD two estimates (one for each source) are available.
Similar to the approach in [6] our CMDS implementation
takes the maximum of these estimates before calculating the
coordinate representation. Fig. 3(a) and Fig. 3(b) show the
results for ψerr, rel and for the RMSE, respectively, over a
varying amount of irregularity. Solid and dashed lines indicate
the average performance for OGP and CMDS, respectively.
The vertical bars indicate ± one standard deviation over 1000
realizations. Three true source angles ψ12 ∈ {90◦, 60◦, 30◦}
were evaluated. It can be seen in Fig. 3(a) that the error
in estimating ψ12 increases linearly with larger irregularity
for all source angles. However, the larger ψ12 the slower
the increase of the error. This can be explained by the fact
that sources spanning a larger relative angle provide a larger
amount of independent TDoA observations, which is beneficial
for the estimation of ψ12 via (10). Fig. 3(b) shows that the
RMSE of the OGP approach (solid) behaves proportional to
ψerr, rel. The mean RMSE of CMDS (dashed) only weakly
depends on the amount of irregularity and is significantly
larger than for OGP. This is because not for all true PDs a
source in endfire position is available, which results in biased
PD estimates. It can be concluded that the violation of the
regularity assumption introduces an error in the OGP estimates.
However, this error is smaller than the error of a conventional
CMDS algorithm even for very irregular shapes. For a correct
estimation of ψ in the 2D case the array shape must have
a two dimensional structure. Thus, the minimum number of
microphones is three. Accordingly, in the 3D case the minimum
number of microphones is four.
B. Detection and correction of outliers

For M > 4 there is a high redundancy in the PD estimates
originating from one source. Therefore, it is possible to detect
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and correct erroneous PD estimates. The detection of erroneous
values is achieved by checking the zero-sum condition for each
triple of PDs. This sum should be zero if the three PD estimates
under test are correct [19]. This is because the PDs generated
by the signal from one source lie on a line (cf. Fig. 1). Note
that in Fig. 1 only the PD estimates relative to the reference
microphone are shown. For the proposed outlier correction
method all PD estimates generated by the same source l are
used. In practice, for each PD estimate d̂

(l)
ij , the zero-sum

condition is checked with a small constant ε according to

|d̂(l)
ik + d̂

(l)
kj − d̂

(l)
ij |≤ ε, (14)

with k ∈ {1, 2, ...,M | k 6= i, j}. If no k is found that
satisfies (14), d̂(l)

ij is marked as an outlier. After that, for
each outlier all possible candidate values are calculated via
|d̂(l)
ik + d̂

(l)
kj |. Then the most frequent candidate value is chosen

as corrected value for d̂(l)
ij . If two or more candidate values

are equally frequent, the smallest one is used. This method
can only correct outliers if at least M − 1 PDs are correct
and these M − 1 PDs provide information on all microphones.
If no correction is possible the initial estimate before outlier
detection is used. In the following ε = 3 mm is used.

IV. EVALUATION

A. Simulation setup

To evaluate the performance of the proposed algorithm for
array shape estimation, the Root-Mean-Squared-Error (RMSE)
between the true (mi) and the estimated (m̂i) microphone
positions is used. The RMSE allows a more meaningful
interpretation of the performance if it is related to the dimen-
sions of the array under investigation. Therefore, the relative
RMSE (RRMSE) is defined as RRMSE = RMSE/||M ||,
where ||M ||=

√
1
M

∑M
i=1||mi − m̄||2 and m̄= 1

M

∑M
i=1 mi.

Because only the relative and not the absolute position of
the microphone array is of interest, a Procrustes analysis is
performed. It allows the estimated array shape to be an arbitrary
rotated or translated version of the true array shape without
increasing the error. However, scaling as a transformation is
not allowed [20].

For the simulation the room impulse responses hil(t) from
source l to microphone i are generated with the image source
method [21]. To allow for a better comparison of the results, the
room dimensions and the array geometry are chosen according
to the real world setup used by Plinge et al. in their overview
article [1]. The room has a dimension of 3.7 m×6.8 m×2.6 m.
For the source and the noise signals white Gaussian noise is
used. Now the microphone signals are calculated with the
generated impulse responses for T60 between 0 s and 0.6 s in
steps of 0.1 s and an SNR from -12 dB to 12 dB in steps of 2 dB.
For each SNR the RMSE and RRMSE of the position estimate
are averaged over 30 trials to get more meaningful results.
We evaluate the performance on a microphone configuration
calibration scenario where the microphones are distributed
across the room. This configuration is probably more relevant
than a compact array, because it is very likely that the positions
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Fig. 4. (a) and (b) show the RRMSE over SNR and T60 for CMDS without
outlier correction (OC) and for OGP with OC, respectively. (c) and (d) show
the RMSE over SNR for T60 = 0.2 s and T60 = 0.3 s, respectively. The
results for OGP ( ) and CMDS ( ) are shown without (solid) and with
(dashed) outlier correction (OC). The horizontal black line indicates the RMSE
where the relative error (RRMSE) is 100 %.

of the microphones change over time. This makes online
calibration inevitable. However, it is also more challenging, at
least for the OGP approach, because the far-field assumption
is more violated than for a compact array. The 2D microphone
configuration consists of three subarrays that are located at
the corners of a triangle with an edge length of d0 = 1 m.
Each subarray consists of a circular array of five microphones
with a radius of 5 cm. This microphone configuration shows
a regularity property leading to an exact angle estimation
with (10) if no disturbance is present. Therefore, similar to
the evaluation in Sec. III-A, we add Gaussian noise with
σnoise = 0.5(d0/6) = 8.3 cm to the centers of the subarrays
and average the results over 20 realizations of the irregular
shape. The sources are located at a distance of 1.5 m from
the center of the microphone configuration and span an angle
of ψ12 = 70◦. Two algorithms are used to perform the array
calibration. The proposed OGP and the CMDS approach. Both,
OGP and CMDS, were evaluated with and without using the
outlier correction described in Sec. III-B. The outlier correction
was applied to the PD estimates generated by the individual
sources.

B. Simulation results

The RRMSE in % is shown over SNR and T60 for CMDS
without outlier correction (OC) in Fig. 4(a) and OGP with
OC in Fig. 4(b). An RRMSE larger than 100 % is clipped in
the colorbar. In both figures a sharp decrease of the RRMSE
can be observed when either decreasing T60 or increasing
the SNR. With OC in Fig. 4(b) the size of the region with
errors above 100 % is significantly smaller than without OC
in Fig. 4(a). Furthermore, the minimum achievable error for
OGP in Fig. 4(b) is significantly reduced compared to CMDS
in Fig. 4(a). A minimum RRMSE of 7 % is achieved for the
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OGP approach. This corresponds to an RMSE of 4.1 cm. For
the CMDS approach the minimum position RRMSE was 20 %,
which corresponds to an RMSE of 11.7 cm. To analyze the
performance in more detail, we show the RMSE in cm for
two fixed reverberation times. Fig. 4(c) shows the RMSE for
T60 = 0.2 s. The horizontal black line indicates the RMSE
where the relative error (RRMSE) is 100 %. The OGP method
without OC ( ) significantly outperforms the CMDS method
( ) when the SNR is increased above −4 dB. If OC is used
(dashed lines), the RMSE of both methods is significantly
reduced for relevant SNRs between −8 dB and 0 dB. For
SNR≥ 0 dB CMDS saturates at a higher RMSE than OGP
and neither CMDS nor OGP benefit from activated OC. This
shows that the performance of CMDS is limited by non-
endfire TDoA estimates rather than reverberation and that
OGP correctly takes this into account by applying the inverse
projection. Fig. 4(d) shows that for T60 = 0.3 s and without
OC (solid lines) OGP only slightly outperforms CMDS for
SNR≥−4 dB. However, OGP can benefit from OC to larger
extent (dashed lines) than CMDS resulting in a significantly
lower RMSE for SNR≥4 dB and achieving the same minimum
RMSE as with T60 =0.2 s. This confirms that the OC method
proposed in Sec. III-B effectively mitigates errors caused by
reverberation. The practical relevance of the proposed method
can be confirmed when the achieved RMSE is compared to
the tolerable RMSE for typical array applications like source
localization. In [1] it is shown, for a similar microphone
configuration with five subarrays, that an RMSE below 10 cm
is sufficient to achieve the minimum source localization error
that is possible with a reverberation of T60 =0.5 s.

V. CONCLUSION

In this paper a new approach for blind estimation of
microphone positions based on acoustic sources was presented.
Only two acoustic sources for a 2D array geometry and
only three sources for a 3D array geometry are needed.
It was shown that the new approach based on orthogonal
geometric projection is able to estimate the positions with
sufficient accuracy, even if the assumed regularity of the array
shape is disturbed. This relaxes the constraints for acoustic
microphone geometry calibration imposed by other state-of-the-
art approaches. Neither many sources nor special coherence
characteristics have to be assumed. Another advantage of the
proposed estimation algorithm is that it is non-iterative. It does
not need a proper initialization as algorithms for non-convex
optimization or special assumptions to converge. However, the
estimates of the proposed method may be used as a robust
initialization of iterative algorithms for refinement or if more
than the necessary number of sources are available. Furthermore
a simple yet effective method for correcting outliers in the PD
estimates was introduced. It provides a significant reduction
of the estimation error compared to no outlier correction,
especially in reverberant environments.
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