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Abstract—Muscle texture may be used as a descriptive feature
for the segmentation of skeletal muscle in Magnetic Resonance
Images (MRI). However, MRI acquisition is not always ideal
and the texture richness might become compromised. Moreover,
the research for the development of texture quality metrics, and
particularly no-reference metrics, to be applied to the specific
context of MRI is still in a very early stage. In this paper, a case
study is established from a texture-based segmentation approach
for skeletal muscle, which was tested in a thigh Dixon MRI
database. Upon the obtained performance measures, the relation
between objective image quality and the texture MRI richness is
explored, considering a set of state-of-the-art no-reference image
quality metrics. A discussion on the effectiveness of existing
quality assessment methods in measuring MRI texture quality
is carried out, based on Pearson and Spearman correlation
outcomes.

Index Terms—Magnetic Resonance Imaging; Objective Quality
Assessment; Quality of Recognition (QoR); MRI Segmentation

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) has been established as

an essential tool for the diagnosis of muscle-related patholo-

gies and studying muscle physiology and anatomy. Segmen-

tation of anatomical structures is commonly used to obtain

quantitative measurements, which play an important role in

diagnosis. Interest on the development of automated or semi-

automated segmentation methods has been continuously in-

creasing, mainly because manually segmenting a large amount

of data, which is often the case with 3D MRI volumes, is a

very difficult and time-consuming task.

Medical image quality could be compromised by a number

of factors, which may be system or context-related [1]. In

the case of MRI, system-related factors include magnetic field

(B0) inhomogeneity, electrical system noise or variable coil

penetration depths, whilst context factors include resonance

frequency shifts between different tissues or inadequate se-

quence parametrization [2]. Several types of image quality

impairments might be induced, including white noise artifacts

[3], [4], blurring [2], [3], ghosting [4], inhomogeneities in

signal intensities [2] or geometric distortions [2].

MRI quality assessment (MRI-QA), and of medical image

in general, provides valuable insight into the relation between
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processes such as image acquisition, compression, transmis-

sion or display, and the perceived and diagnostic quality of

medical visual content. The main goal of such studies is to

obtain recommendations to assure image quality in clinical

practice.

II. BACKGROUND & RELATED WORK

Currently, research efforts in quality assessment of medical

image are somewhat dispersed, due to the extensive amount

of different visual content used in medical practice and the

inherent quality issues mentioned before, which hinder the

definition of a reference. Moreover, subjective quality assess-

ment should also take into account the diagnostic quality and,

therefore, rely on expert evaluators [5].

Some studies on subjective MRI-QA may be found in [3],

[4], [6]–[8]. As for objective quality assessment, most efforts

apply common reference metrics, such as the Peak Signal-to-

Noise Ratio (PSNR) [6], [9]–[12] and the Structural Similarity

Index (SSIM) [6], [9], [10]. The goal of these studies has

been almost invariably to evaluate the influence of artifacts

and compression on the perceived image quality or to measure

the performance of reconstruction or filter methods.

Image quality assessment (IQA) using full-reference or even

reduced-reference metrics requires content marked as optimal,

which is not always possible, especially when dealing with

medical content. Although research in no-reference assessment

of MRI quality is sparse, some approaches using actual clinical

context MRI content may be found in [12]–[14]. Another

possible approach to study the quality assessment of MRI

acquisition is using phantom/test object measurements, as

reported in [2].

Some other setbacks arise in objective MRI-QA using no-

reference metrics, given the variety of applications in relation

to which quality might be evaluated. For example, a metric

strongly correlated with the perceived image quality may

not effectively predict the suitability of the same image for

diagnosis purposes.

According to [15], quality of recognition (QoR) research

aims at modeling quality assessment methods using recogni-

tion tasks. In the case of the referred paper, the authors study

the quality of video content used for recognition tasks and

task-based multimedia applications. To the best of our knowl-

edge, there is no study correlating segmentation outcomes
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Fig. 1. Mean and standard deviation of performance measures per MRI
volume. Recall, precision and the Dice overlap coefficients are plotted in
red, blue and green marks, respectively.

with objective MRI quality. In this paper, a QoR approach to

medical IQA is proposed, using the texture-based automated

segmentation framework proposed in [16] as the recognition

task. The segmentation method relies on texture differences

between tissues to classify a region of interest (ROI) as muscle

or non-muscle tissue. A visual inspection of the available

MRI data and the corresponding segmentations suggested a

tendency for lower quality MRI to lead to worse results.

A series of existing objective IQA metrics were correlated

with the reported segmentation performance, to evaluate the

adequation of texture recognition as an indirect IQA measure

towards the future development of a QoR-based MRI-QA

model.

III. METHODS

A. MRI Dataset description

The original MRI data consisted on volumetric acqui-

sitions of both thighs performed on a 3T scanner (Tim

Trio, Siemens Healthcare, Erlangen, Germany) using a 3-

point Dixon Gradient Echo sequence [17], with the following

parametrization: TR = 10 ms, TE = 2.75 / 3.95 / 5.15 ms, RF

flip angle = 3◦, matrix: 448×224×64, field of view (FOV):

448×224×320mm3 (voxel size: 1×1×5mm3) [18].

For this study, the working dataset included only the Out

of Phase images of the right thigh of 10 healthy subjects,

with an image size of 224×224 pixels. From a total of 64

slices from each subject, a centered subset of 40 slices was

considered, discarding images near the knee and the ankle.

From this subset, 5 images were then randomly selected for

segmentation and quality assessment. Manual segmentations

of clinically relevant muscles were provided for each image

and used as ground truth masks for algorithm training and

performance assessment.

(a) Segmentation with higher recall
rate

(b) Segmentation with lower recall
rate

Fig. 2. Examples of muscle tissue segmentation results.

B. Segmentation of Skeletal Muscle

An automated method for the segmentation of skeletal

muscles in MRI was proposed in [16]. To account for the

rotation caused by image registration in the described al-

gorithm, all the images in the working dataset were zero-

padded across both dimensions, resulting in a final image size

of 256×256. Each image was subdivided into 16x16 non-

overlapping cells and a set of local features were computed

within each cell. The descriptor included the Histogram of

Oriented Gradients (HOG) [19] and statistical measures (mean,

variance, skewness, and kurtosis) from both the grayscale

image and a filtered image using a Laplacian of Gaussian

(LoG) filter [20]. Moreover, the descriptor also included the

Haar wavelet coefficients [21] from a 3 level decomposition,

which allowed for a finer segmentation.

An AdaBoost classifier [22], [23] was trained with the

proposed features, in a 10-fold cross-validation. For the clas-

sification of images from a given MRI volume, the features

retrieved from images of the remaining 9 volumes were chosen

for training.

The binary output was then labeled, using a probabilistic

muscle atlas derived from training images in each cross-

validation iteration. However, given the purpose of this study,

the method performance measures take into consideration the

whole muscle tissue, and not differentiated muscles. Seg-

mentation performance was assessed by computing recall,

precision, and the Dice overlap coefficient:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

Dice =
2|A ∩B|
|A|+ |B| (3)

where TP refers to true positives, FN to false negatives and

FP to false positives. In equation (3), A and B refer to muscle-

labeled regions in the segmentation output and ground truth,

respectively. Fig. 1 summarizes the reported cross-validation

performance outcomes. In Fig. 2, two examples of muscle
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Fig. 3. Correlation coefficients for segmentation recall rates vs. IQA data
(Full data).

tissue segmentation are presented (high recall in Fig. 2(a) and

lower recall in Fig. 2(b)).

C. Objective Quality Assessment

A database of reference quality MRI was not available for

this study. Therefore, and given the lack of MRI-specific no-

reference metrics, the proposed approach for a QoR study

involving MRI texture segmentation relies on a set of state-

of-the-art no-reference methods which may describe image-

specific properties such as sharpness, speckle noise, and in-

tensity/contrast inhomogeneities.

The considered metrics have already been implemented in

[24], namely: Variance (VAR) [25], Laplacian (LAP) [26],

Gradient (GRAD) [26], Autocorrelation (AutoCorr) [26], Fre-

quency Threshold metric (FTM) [27], Marziliano Blurring

metric (MarzBM) [27], HP metric (HPM) [28], Kurtosis-based

metric (KurtM) [29], and Riemannian Tensor-based metric

(RTBM) [30].

As described in section III.B, the texture descriptors were

based on local information, extracted from 16x16 cells, com-

bined with finer information from wavelet decompositions.

Image quality metrics were also computed within similar

16x16 non-overlapping windows, to attempt the retrieval of

local variations, more closely related to the segmentation

scheme. Final IQA values for each MRI scan were obtained

by taking the average of cell-based metric outputs.

The chosen window size, for both texture and quality

analysis, was arbitrarily defined to ensure a sufficiently large

frame for meaningful information extraction.

In order to focus on muscle texture recognition, a ROI-

based approach was followed. According to the ground truth

images of the Dixon MRI database, quality metrics were only

computed for regions marked as muscle tissue. Moreover,

a correlation was only established between recall rates, i.e.

sensitivity, and IQA metrics, since it represents retrieval of

true positives.

IV. RESULTS & DISCUSSION

In this study, IQA outcomes were compared to texture seg-

mentation performance measures, considering each individual

image. The cross-validation scheme in [16] leads to a total of

(a) Correlation coefficients for segmentation recall rates vs. IQA data (nor-
malized Dice Overlap Coefficients > 0.7).

(b) Correlation coefficients for segmentation recall rates vs. IQA data (nor-
malized Dice Overlap Coefficients ≤ 0.7).

Fig. 4. Examples of muscle tissue segmentation results.

50 data pairs for each IQA metric vs. performance case (10

volumes*5 images).

In Fig. 3 the absolute values of the Pearson Linear Cor-

relation (PLCC) and the Spearman Rank Order Correlation

(SROCC) coefficients of recall rates vs. IQA metrics are

shown. These results consider the full set of segmentation

results. The top-performing metrics are the Variance metric

(PLCC = 0.724, SROCC = 0.737) and RTBM (PLCC = 0.712,

SROCC = 0.707). Taking into account the remaining metrics,

the results drop significantly.

Analyzing recall vs. IQA scatter plots, a highly non-linear

region may be observed. As stated in section III.C, only recall

rates are correlated with IQA in this study, given the proposed

task for the QoR approach, i.e. texture recognition. Metric

computation also relied on averaging over a local-approach,

which may also play a role in the observed non-linearity.

However, it does not seem probable that taking a single quality

value over the entire image could produce a more strongly

correlated output. A major drawback would be the presence

of different tissues in each MRI slice, which translates into

texture diversity. The texture-based segmentation outcomes are

coherent with this assumption.

Typically, there is a trade-off between recall and precision,

observable in classification and segmentation tasks, which may

be confirmed in Fig. 1. An increase in the true positive rate

may also increase the number of false positives, which affects

the precision rate. In terms of segmentation evaluation, the

Dice overlap coefficient provides a more specific measure of
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(f) MarzBM vs. Recall
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(i) RTBM vs. Recall

Fig. 5. Scatter plots of normalized recall rates (x-axis) vs. normalized IQA Metrics (y-axis). Circle points represent cases with Dice ≤ 0.7 and cross points
refer to Dice > 0.7.

segmentation accuracy. To try to reduce the non-linearity in the

reported correlations, the Dice coefficient was used to divide

recall data considering a threshold of 0.7.

The results were then analyzed considering the resulting

subsets. Fig. 4(a) shows correlation coefficients for segmenta-

tion outputs with Dice > 0.7. On the other hand, Fig. 4(b) only

takes into account segmentation outputs with Dice ≤ 0.7. In

Fig. 5, recall vs. IQA scatter plots are shown, also considering

the referred subsets.

In the case of Dice ≤ 0.7, it should be noted that only

7 points were retrieved, from a total of 50 recall-IQA pairs.

Stronger correlations were obtained with all metrics, with the

best performances being obtained with RTBM (PLCC = 0.928,

SROCC = 0.857) and FTM (PLCC = 0.840, SROCC = 0.964).

When the best segmentation results are taken into account,

considering the Dice overlap coefficient, correlation values are

similar to those obtained with the full dataset (Fig 4(a)). The

Variance metric, with PLCC = 0.761 and SROCC = 0.762

(Fig. 5(a)), and RTBM, with PLCC = 0.748 and SROCC =

0.6956 (Fig. 5(i)) remain the top-performing IQA metrics.

The RTBM and VAR metrics showed an acceptable cor-

relation with the recall of the segmentations in all tested

scenarios (full data and Dice-based data selection), while the

remaining IQA metrics did not perform well. In the scatter

plots of RTBM and VAR (Figs. 5(a) and 5(i), respectively),

there is a tendency for points with higher recall to appear

in a higher quality region. Similarly, points with lower recall

tend to appear in a lower quality region. For these extreme

cases, the texture recognition task was able to predict the IQA

outcome, while the correlation between mid-range recall/IQA

is slightly less significant.

V. CONCLUSIONS

A QoR approach to the image quality assessment of MRI

was presented in this paper, following the results of a local-

based texture segmentation method. This study was deployed
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as an initial effort towards the development of no-reference

task-based quality assessment models for MRI.

Task-based approaches may present a solution for the prob-

lem of objective MRI quality assessment, as well as medical

imaging in general. In this study, texture recognition showed

a reasonable potential to model the outcome of existing no-

reference IQA metrics.

The tested metrics are designed for general purpose IQA

and typically do not yield a very high performance. Therefore,

future research should consider metrics specifically designed

for MRI or, at least, medical image applications. Also, a more

comprehensive MRI dataset should be tested to further validate

these preliminary findings.
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[2] M. Davids, F. G. Zöllner, M. Ruttorf, F. Nees, H. Flor, G. Schumann, and
L. R. Schad, “Fully-automated quality assurance in multi-center stud-
ies using MRI phantom measurements,” Magnetic resonance imaging,
vol. 32, no. 6, pp. 771–780, 2014.

[3] L. S. Chow, H. Rajagopal, R. Paramesran, and Alzheimer’s Disease
Neuroimaging Initiative, “Correlation between subjective and objective
assessment of magnetic resonance (MR) images,” Magnetic resonance
imaging, vol. 34, no. 6, pp. 820–831, 2016.

[4] H. Liu, J. Koonen, M. Fuderer, and I. Heynderickx, “The relative impact
of ghosting and noise on the perceived quality of MR images,” IEEE
Transactions on Image Processing, vol. 25, no. 7, pp. 3087–3098, 2016.
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