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Abstract—In the last decade, Compressive Sensing (CS) has
emerged as the most promising, model-driven approach to
accelerate MRI scans. CS relies on the key sparsity assumption
and proposes random sampling for data acquisition. The practical
CS approaches in MRI employ variable-density (VD) sampling,
where samples are drawn at random based on a parametric prob-
ability model which focuses on the center of the Fourier domain.
In stark contrast to this model-driven sampling approaches, we
propose a data-driven framework for optimizing sampling in
parallel (multi-coil) MRI. Our approach does not assume any
structure in the data, and instead optimizes a performance metric
(e.g. PSNR) for any given reconstruction algorithm, based on our
earlier learning-based sampling framework previously applied
to 2D MRI which we also extend to 3D MRI setting in this
work by employing lazy evaluations in the greedy algorithm.
We show boosted performance for the parallel MRI based on
this sampling approach and highlight the inefficiency of variable
density approaches. This suggests that data-driven sampling
methods could be the key to unlocking the full power of CS
applied to MRI.

Index Terms—Parallel MRI, compressive sensing, learning-
based subsampling, greedy algorithm

I. INTRODUCTION

Imaging speed has historically been an important crite-
rion in many MRI applications. Due to many physical and
physiological limitations in the acquisition, much effort has
been devoted to the design of reconstruction methods that use
less Fourier data without sacrificing image quality. This has
recently allowed the rapid rise of Compressed Sensing (CS)
[1], which has been successfully combined with parallel MRI
to produce better quality images at lower scan times [2].

Traditional compressive MRI has been model-driven, in the
sense that it assumes models such as sparsity or structured
sparsity in some basis and proposes reconstruction algorithms
such as basis pursuit exploiting these models along with
theoretical performance guarantees [1], [3]. As for practical
sampling, variable density approaches [4], [5] have dominated
the arena where one tunes the parameters of the model. We
will show that this itself is a limiting factor for a better
reconstruction performance.

In the area of machine learning, data-driven approaches
provide promising performances compared to the classical
model-driven methods for various applications. In the light
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of this paradigm shift and based on our prior work, we
propose a data-driven framework for sampling in the parallel
MRI setting which is more relevant for clinical applications
[6]. In our approach, we employ a combinatorial algorithm
that lets the data decide sampling masks matched to specific
parallel MRI decoders in use. Our masks are structured, with
a certain amount of low frequency content as well as a more
uniform spread on higher frequencies which in turn manages
to significantly reduce the artifacts seen in the variable den-
sity approach. Moreover, the generalization of our masks is
supported by statistical learning theory.

Our contributions in this work are two-fold: We extend our
learning-based framework [7], [8] to the multicoil MRI setting
and show that this provides reliable and boosted performance
compared to variable density approaches. As a second contri-
bution, we also consider 3D MRI setting for which we propose
using lazy greedy algorithm which successfully tackles the
combinatorial problem that is harder since one can subsample
in both phase and frequency encoding directions in 3D MRI.

II. MODEL-DRIVEN COMPRESSED SENSING

In the compressive sensing (CS) problem [1], one seeks
to recover a sparse vector via a small number of linear
measurements. In the special case of compressive parallel
MRI, these measurements take the specific form of subsampled
Fourier measurements and are described as follows:

bj = PΩΨSjx + wj , (1)

where Ψ ∈ Cp×p is the Fourier transform operator applied to
the vectorized image x ∈ Cp, PΩ : Cp → Cn is a subsampling
operator that selects the rows of Ψ indexed by the set Ω, with
|Ω| = n. We refer to Ω as the sampling pattern or mask. j
ranges from 1 to C and denotes the measurement on each coil
with its corresponding sensitivity Sj ∈ Rp×p. Here, wj ∈
Cn is additive noise, independent on each coil. This setting
describes parallel measurements acquired on different coils for
the same underlying image x.

Given the vectorized measurements b =
[
b1 . . . bC

]T
,

b ∈ CnC (along with knowledge of Ω), a reconstruction algo-
rithm (also referred to as a decoder) forms an estimate x̂ of x.
This algorithm is treated as a general function, and is written
as x̂ = g(Ω,b). A wide variety of decoding techniques have
been proposed for compressive MRI; hereafter, we present a
few of the most widely-used and best-performing techniques,
for both the single-coil and multi-coil settings.
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A. Single-coil and multi-coil reconstruction algorithms

In the general CS problem, decoders based on convex
optimization have received considerable attention, both due
to their theoretical guarantees and practical performance. The
formulation of a single-coil problem is same as Equation
(1), the only difference being C = 1, and S1 equals p × p
identity matrix. In the noiseless setting (i.e., w = 0), a notable
choice is basis pursuit (BP) [1] which minimizes `1 norm
of the image in a sparse domain. A similar type of convex
optimization formulation is total variation (TV) minimization.

SENSE is a method that requires the knowledge of coil
sensitiviies to retrieve an unaliased image from parallel acqui-
sitions [9]. We use its implementation in the BART toolbox
[10] to iteratively solve the following:

min
z
‖b−PΩΨSz‖22 + λ‖Φz‖1 (2)

where b ∈ CnC is the coil-wise subsampled Fourier mea-
surements, S =

[
S1 . . .SC

]T ∈ RCp×p are the stacked
coil sensitivities, PΩΨ is the subsampled Fourier transform
applied coil-wise to the product of the image with the stacked
coil sensitivities and Φ is a sparsifying operator. Recently,
annihilating filter based low-rank Hankel matrix approach
(ALOHA) has been also shown to be effective as a parallel
MRI algorithm that exploits low-rankness property [2]. Other
compressed sensing multicoil algoritms include [11], [12].
B. Sampling mask design

Generally speaking, most popular approaches for designing
Ω for compressive MRI make use of random variable-density
sampling according to a non-uniform probability distribution
in order to minimize the coherence [4]. Such approaches have
notable limitations: They typically require parameters to be
tuned and it is generally unclear which particular sampling
distribution will be most effective for a given decoding rule
and anatomy. We focus on Cartesian masks in this work, how-
ever we also refer to recent non-Cartesian sampling schemes
proposed in [13]–[15].

Recently, alternative design methods have used fully sam-
pled training images for sampling optimization. In [16]–[18],
the training data is used to construct a sampling distribution,
from which the samples are then drawn randomly. In [19],
[20], a single training image is used at a time to choose
a phase encode to sample. Much like the above-mentioned
variable-density sampling approaches, these existing adaptive
algorithms assume sampling models or contains parameters
for their mask selection whose tuning is non-trivial. Moreover,
although some non-adaptive methods provided theoretical jus-
tifications of their mask selections [21], [22], none of these
adaptive methods did.

III. DATA-DRIVEN COMPRESSED SENSING

We follow our learning-based framework of [8], and we
summarize our main ideas hereafter. We first assume that we
have a set of training samples x1, . . . , xm ∈ Cp representative
of an unknown test signal of interest x coming from the
same underlying probability distribution. We wish to find the
sampling pattern Ω that will perform best on x, according to

a performance metric ηΩ(x, x̂), and given constraints on the
design of the mask. It is desirable to constrain Ω to contain
for instance only horizontal and/or vertical lines in k-space.
To formalize this, we define a set S of subsets of {1, . . . , p}
which typically contains sets of phase encodes in the k-space.
The final mask then takes the form Ω =

⋃`
j=1 Sj , Sj ∈ S ,

for some ` > 0. We assume that there exists a cost function
c(Ω) > 0 associated with each sampling pattern, and that the
final cost must satisfy c(Ω) ≤ Γ for some Γ > 0, and we
consider here the case where the cost is the total number of
indices in Ω. This then leads to the following problem

Ω̂ = arg max
Ω∈A

1

m

m∑
j=1

ηΩ(xj , x̂j). (3)

where A is the set of feasible Ω’s according to S. Given that
enough training samples are considered, statistical learning
theory guarantees that the result obtained using the empirical
average in Equation 3 will perform well on x [8].
A. Learning-based variable density

An intuitive approach given in [8] is to find an approxima-
tive solution to the combinatorial problem (3) by generating a
candidate masks Ω1, . . . ,ΩL using parametric variable-density
methods, and choose the one with the best empirical perfor-
mance on the training set (Algorithm 1). While similar ideas
have already been used when performing parameter sweeps in
existing works (e.g., see [16]), our framework justifies why
the empirical performance is the correct quantity to optimize.

Algorithm 1 Learning-Based variable density (LB-VD)
Input: Training data x1, . . . ,xm, decoder g, candidate masks
Ω1, . . . ,ΩL
Output: Sampling pattern Ω

1: for ` = 1, . . . , L do
2: For each j, set bj ← PΩ`

Ψxj , x̂j ← g(Ω`,bj)
3: η` ← 1

m

∑m
j=1 η(xj , x̂j)

4: Ω← Ω`∗ , where `∗ = arg max`=1,...,L η`
5: return Ω

B. Learning-based greedy mask optimization
In [8], a greedy algorithm is used to find an approximate

solution to (3) for single-coil reconstructions. We start from
a base mask Ω, and at each iteration, we create candidate
masks Ω′ = Ω∪S with each subset S ∈ S not yet included in
the mask Ω. After reconstructing the image x̂ in the training
dataset using the decoder g for all the Ω′, the subset S
that yields the larger increase in the performance metric η
is permanently added to the mask Ω and this procedure is
repeated while the cost constraint Γ is not violated. As it will
be seen in Section IV, this algorithm can seamlessly optimize
the sampling in the case of parallel MRI as well.
C. Learning-based lazy greedy algorithm

Algorithm 2 is infeasible in terms running time in the case
3D MRI where one is allowed to sample in both phase and fre-
quency encoding directions. A faster stochastic approach was
proposed in [23] for dynamic MRI, but cannot be readily ap-
plied to the 3D setting, as it would require unreasonably large
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Algorithm 2 Learning-based greedy (LB)
Input: Training data x1, . . . ,xm, decoder g, sampling subsets
S, cost function c, maximum cost Γ
Output: Sampling pattern Ω

1: Ω← ∅
2: while c(Ω) ≤ Γ do
3: for S ∈ S such that c(Ω ∪ S) ≤ Γ do
4: Ω′ = Ω ∪ S
5: For each j, set bj ← PΩ′Ψxj , x̂j ← g(Ω′,bj)
6: η(Ω′)← 1

m

∑m
j=1 η(xj , x̂j)

7: Ω← Ω ∪ S∗, S∗ = arg max
S : c(Ω∪S)≤Γ

η(Ω ∪ S)− η(Ω)

c(Ω ∪ S)− c(Ω)

8: return Ω

batchs. Another way of speeding up is to use lazy evaluations
[24] which is equivalent to but faster than the greedy algorithm
for submodular functions (functions with diminishing return
property) which possess optimization guarantees [25]. While
in our present setting, verifying submodularity is difficult due
to the fact that the performance of reconstructions generally
cannot be written in a closed form, we were motivated by
the fact that Algorithm 2 works well in practice even if
the objective function is not submodular. Indeed, as we will
observe in Section IV, lazy evaluations as well perform well
for mask optimization.

The lazy greedy Algorithm 3 relies on the fact that if at the
i-th iteration of the greedy algorithm, an element S is expected
to bring a marginal benefit ∆(S|Ωi) = η(Ωi∪S)−η(Ωi)

c(Ω∪S)−c(Ωi)
, then it

holds that ∆(S|Ωj) ≤ ∆(S|Ωi) for all j ≥ i. Exploiting this
fact, one can keep a list of upper bounds on the marginal
benefits of each element S, called ρ(S), initialized at +∞.
Then, at each iteration, the element S with largest value ρ(S)
is picked and updated as ρ(S) = ∆(S|Ω). If ρ(S) ≥ ρ(S′)
∀S′ ∈ S, the marginal benefit of this element S is larger
than the upper bounds of each other marginal contribution,
and is consequently added permanently to Ω. This speeds up
the algorithm, since ρ(S) ≥ ρ(S′) can be satisfied after a few
trials, instead of trying each available S at every iteration [26].

Algorithm 3 Learning-based lazy greedy (LB-L)
Input: Training data x1, . . . ,xm, decoder g, sampling subsets
S, cost function c, maximum cost Γ
Output: Sampling pattern Ω

1: Ω← ∅
2: ρ(S)← +∞ ∀S ∈ S s.t. c(Ω ∪ S) ≤ Γ
3: while c(Ω) ≤ Γ do
4: Ω′ ← Ω ∪ S,where S = arg max

S′∈S : c(Ω∪S′)≤Γ

ρ(S′)

5: For each j, set bj ← PΩ′Ψxj , x̂j ← g(Ω′,bj)
6: η(Ω′)← 1

m

∑m
j=1 η(xj , x̂j)

7: ρ(S)← η(Ω′)−η(Ω)
c(Ω′)−c(Ω)

8: if ρ(S) ≥ ρ(S′) ∀S′ ∈ S s.t. c(Ω ∪ S′) ≤ Γ then
9: Ω = Ω ∪ S

10: return Ω

IV. NUMERICAL EXPERIMENTS

A. Implementation Details
We consider the decoders described in Section II: BP,

TV, SENSE, and ALOHA. For BP, we let the sparsifying
transform to be the shearlet transform [27]. For SENSE, we
used ESPIRiT method to estimate coil sensitivities [11]. The
MRI data used in the following subsection was acquired on
a 3T MRI system (SIEMENS). The protocols were approved
by the local ethics committee. The data set consists of 2D T1-
weighted brain scans of seven healthy subjects, which were
scanned with a FLASH pulse sequence and a 12-channel
receive-only head coil. In our experiments, we use 4 different
slices of sizes 256×256 from two subjects as training data
and 100 slices from 5 subjects as test data. To speed up
the computations, we compressed our 12-channel data into
4-channel. The 3D MRI dataset of knee images that is used in
the last subsection is acquired by a 3T system (GE Healthcare)
using FSE CUBE sequence with the proton density weighting.
The number of channels is 8 and the matrix size is 320 × 320.
We used the data of 8 subjects as training data and remaining
12 subjects as test data. This dataset is publicly available
at http://mridata.org. Note that once we learn a mask for a
particular anatomy and scan parameters, it can be used on all
subsequent scans in a clinical setting. In the experiments, we
used PSNR as the image quality metric η for Algorithm 1,2
and 3, however one can use other metrics such as SSIM [8].
But we also provide SSIM values on reconstructed images.
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Fig. 1. (a) PSNR performances of various masks averaged over 100 test
images: LP (low-pass mask), VD (variable density), LB-VD and LB are masks
produced by Algorithm 1 and 2 respectively. (b) Ground truth image for the
reconstructions given in Figure 2.

B. Optimal masks for multi-coil 2D MRI setting

In this section we compare the performances of various
mask selection methods. As it can be seen in Figure 1(a) for
a range of subsampling rates, the coherence-based VD masks
can perform better than low-pass (LP) mask. However, they
have weaker performance compared to the parameter sweep
with PSNR as the objective function (Algorithm 1 - LB-VD).
This is expected as the LB-VD masks exploit the knowledge
of the training set, whereas the coherence-based VD masks do
not. The best performance is provided by the greedy Algorithm
2 (LB). Indeed, the greedy LB algorithm is free from the
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TABLE I
CROSS PERFORMANCE OF OPTIMAL SINGLE AND MULTI-COIL MASKS AT

20% SUBSAMPLING RATE AVERAGED OVER 100 TEST SLICES.

Single-coil Multi-coil

Mask
Decoder TV BP SENSE ALOHA

TV LB 32.82 34.23 34.56 35.17
BP LB 32.90 34.27 35.02 35.07
SENSE LB 31.51 31.82 36.88 36.61
ALOHA LB 29.00 26.95 30.73 37.15

constraint of a parametric distribution, which allows the data
to decide which mask is best suited to a given decoder. Also,
the VD-based masks result in artifacts especially visible in the
ALOHA reconstructions that are suppressed in the LB-case.

In Figure 2, we have also included optimal single coil
masks (TV and BP) which result in inferior performance when
used with the multi-coil SENSE and ALOHA reconstruction
algorithms. Compared to these single coil masks, the optimal
multi-coils masks are found to be more spread in k-space.
As expected, one obtains the best performances in terms of
visual quality and performance metrics when the LB-mask
is paired with the reconstruction algorithm for which it was
trained. In Table I, we provide an average cross-performance
of single/multi coils masks and reconstruction algorithms. We
see that it is important to optimize single and multi-coil masks
separately as they are quite different from each other, which
was also observed by [28] recently.

C. Optimal masks for multi-coil 3D MRI setting

In this section we demonstrate the effectiveness of Algo-
rithm 3 in providing masks for 3D MRI by comparing it
to common 3D MRI subsampling masks: Controlled Aliasing
in Parallel Imaging Results in Higher Acceleration (CAIPIR-
INHA) [29], Poisson disc (PD) sampling [30] and its variable
density variant (VD-PD) [31], and adaptive random sampling
method [16]. For brevity we used only SENSE algorithm as the
multi-coil reconstruction algorithm and for all masks we took
the central 24 × 24 region as calibration region to estimate the
coil sensitivities. As seen in Figure 3, the mask (LB-L) given
by Algorithm 3 provides superior image quality compared to
the benchmarks and comparable result to more recent VD-PD
sampling whose polynomial decay parameter is optimized on
the training data using Algorithm 1.

V. CONCLUSION

With this work, we contend that the conventional wisdom
of variable density-based methods have been limiting the
performance of CS applied to parallel MRI. We presented
a data-driven approach to sampling optimization, where, for
any given reconstruction algorithm, we let the training data
decide on the sampling pattern without any assumption on the
structure of the signal. This approach was shown to outperform
the state-of-the-art. We also extended our method to 3D MRI
by employing the lazy greedy algorithm.

It remains as an interesting direction to investigate the
resulting g-factors of our masks [9]. We also anticipate that

pairing our learning-based method with recent neural network
reconstruction algorithms for parallel imaging will provide an
even more powerful data-driven approach to compressive MRI.
Finally, we also plan to apply our framework to non-Cartesian
sampling schemes which are robuster to motion artifacts.
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Fig. 2. Optimized masks and example reconstructions under SENSE and
ALOHA decoding at 20% sampling rate. See Figure 1 for ground truth.
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