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Abstract—In this paper, a saliency estimation technique for
omni-directional images is presented. Traditional approaches for
estimating 360° image saliency rely on the exploitation of low
and high-level image features, along with auxiliary data, such
as head movement or eye-gazes. However, the image content
plays an important role in saliency estimation. Based on this
evidence, in the proposed method low-level features are combined
with the detection of human faces. In this way it is possible
to refine the saliency estimation based on the low-level features
by assigning a larger weight to the regions containing faces.
Experimental results on 360° image dataset show the effectiveness
of the proposed approach.

Index Terms—Omni-directional images, saliency, face detec-
tion, low-level features

I. INTRODUCTION

In recent years, many efforts have been devoted to increase
the immersivity feeling of a user watching an image or a video.
In fact, the classical 2D image represents a flat projection of
the real scene on a 2D planar support. The point of view is
fixed, as well as the point of interest or the focused area.

The availability of novel technologies (i.e., plenoptic cam-
eras, omni-directional cameras, or multiple cameras setup)
allows a more realistic rendering of the scene giving the user
the freedom of changing the point of view or focusing different
areas of the scene. In this way, the quality of experience is
improved [6], [7], [23]. Among the recording systems, the
popularity of omni-directional (or 360°) cameras has been
growing as demonstrated by the availability of consumer level,
low-cost, acquisition devices. Despite the fact that an omni-
directional content is captured, an observer can view only
one portion of the scene at a time. The user browses the
scene with the movement of the eyes and moves from one
region to another by means of head and body movements. The
rendering systems designed for 360° images, reproduce this
mechanism by showing only one portion of the 360° image
(the “viewport”) at a time and then changing the viewport
content according to the user’s head movement. As can be
noticed, the free head motion results in an experience closer
to the real-life viewing behaviour.

With respect to 2D content, a 360° media requires larger
storage space, heavier computational speed and larger band-
width for transmission. Therefore, for compression and pro-
cessing (e.g., denoising or enhancing) purposes, the under-

standing of the salient regions in a 360° image is essential.
In literature, several methods have been developed for detect-
ing salient regions in classical 2D images. However, studies
specifically devoted to estimate saliency in 360° images are
limited.

The most straightforward solution has been the application
of 2D saliency predictors to 360° images. One example is in
[24]. In this work the spherical content is projected to equi-
rectangular format. This operation introduces distortions that
the authors analyze by considering different interpretations of
the equi-rectangular images (i.e., continuity-aware, cube map,
and a combination of both).

An extension of 2D classical approaches is in [2] where the
authors extract a 2D saliency map together with information
on hue and saturation, and combine this information with the
detection of the presence of human shapes for refining the
overall saliency map. New approaches have been specifically
designed for saliency estimation in omni-directional images.
Fang et al. in [9] base their approach on the extraction of per-
ceptual features from the CIE Lab color space. A contrast map
is fused with a boundary connectivity map for estimating the
saliency of omni-directional content. The methods proposed in
[1], [10] include a semantic analysis of the scene to account
for the content of the image in the task of saliency estimation.

Recently, deep learning schemes have been successfully
applied for saliency estimation in panoramic images. He
et al. in [14] investigate the use of CNNs (Convolutional
Neural Networks) for saliency estimation. Similarly, in [20]
the authors exploit CNNs to adapt 2D prediction to omni-
directional images.

In this paper, we propose a saliency estimation model
for 360° images. It is based on the fusion of features
extracted from the visual content at different layers: low-
level, high-level, and semantic level features. In more
details, information on hue, saturation, luminance, 2D visual
saliency and image entropy are combined with a semantic
analysis of the content to identify the presence of human faces.

II. PROPOSED APPROACH

The proposed Face attention and Low-level feature based
omni-directional image Saliency estimation model (FLS) is
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Fig. 1: Proposed Face attention and Low-level feature based omni-directional image Saliency estimation model (FLS).

shown in Figure 1. The following subsections describe each
step involved in the FLS model.

A. Viewport Selection

An immersive experience can be obtained by viewing
360° images with a Head Mounted Display (HMD). Each
HMD is characterized by a limited Field-Of-View (FOV)
that controls the angle and exposure of the 360° content
to the viewer. For example, HTC Vive and Oculus DK2
HMDs show 100° of FOV in both horizontal and vertical
directions. Thus, a user wearing a HMD is required to move
his/her head for exploring the entire 360° content. Similarly,
for estimating the saliency of a 360° image, every possible
FOV should be considered. The traditional approach partitions
the equi-rectangular image into multiple windows (each one
representing a possible FOV), estimates the saliency for each
window and, finally, re-projects the saliency maps into final
equi-rectangular saliency map [2], [18], [22].

The partitioning of an equi-rectangular image into small
portions corresponding to the FOVs of a user while exploring
a 360° content is a challenging task. This operation is generally
performed in two steps. First, angular sampling is performed
over the spherical image and each sampled point is considered
as the centre of the estimated FOV. Then, windows represent-
ing the actual FOV are extracted and an inverse gnomonic
projection on a rectangular plane is performed for each pixel.
The extracted windows on rectangular plane with fixed width
and height are called viewports. As depicted in Figure 1, in
this work we first divide the input equi-rectangular image
into a number of viewports. Then, each individual viewport
undergoes the proposed saliency estimation method. Finally,
the estimated saliency maps for each viewport are re-projected
to the equi-rectangular plane. A detailed description of the
viewport extraction and re-projection technique is presented
in [2]. In the following subsections, we describe the proposed
saliency estimation technique on each extracted viewport.

B. Low-level Features

Images can be described by exploiting different low-level
features such as hue, saturation, edge, brightness, gradients,
etc. Such features have been adopted in traditional 2D and,

recently, in 360° image saliency estimation systems [9], [21].
In this work, the following low-level features have been used:

• Hue (H), Saturation (S), Luminance (L): H and S
components provide a basic indication of color and better
visual consistency than RGB components [16]. L refers
to the overall brightness of an image. Since the human
eye is more sensitive to brightness, L acts as a prominent
feature for image saliency estimation [3], [8].

• Graph-Based Visual Saliency (G): Harel et al. propose
a graph computation model for estimating 2D image
saliency [12]. The bottom-up saliency estimation tech-
nique consists of three steps. First, a linear filtering is
performed on the image to compute the feature maps (Ga-
bor, contrast, and luminance). Subsequently, a Markovian
based activation map is generated to highlight unusual
regions in the image. Finally, a normalization step is per-
formed on the generated activation maps. This approach
is by far the most popular saliency estimation technique
that exploits the low-level features [19], [24], [26].

• Entropy (E): E estimates the information in an image
as the frequency of change in pixel intensities. Therefore,
entropy can be used to measure the information content
of an image. The Shannon entropy is considered in our
work and it is computed for each viewport. The entropy
of each viewport, Vi, is computed as:

EVi = −
∑
x

px log2(px) (1)

where, px is the probability of occurrence of any pixel x
in Vi. The features are computed for each Vi, normalized,
and linearly combined. The combination weights (α, β, γ)
have been selected to provide higher relevance to selected
features. The low-level viewport features can thus be used
to compute the low-level saliency map, SalVi

low, as:

SalVi

low = α · (H + S + L)Vi
+ β ·GVi

+ γ · EVi
(2)
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The saliency map SalVi

low is further improved by exploit-
ing the content of viewports. The following subsection
depicts the use of human faces as high-level features for
saliency estimation.

C. Face Detection

The saliency map may be further improved by using high-
level factors, such as recognized objects or the presence
of human faces. The latter element plays an important role
in guiding visual attention, and thus, the inclusion of face
detection into a visual attention model can improve its quality
[10].

For the face detection task, we use the TinyFace approach
presented in [15]. It is based on a multi-layer hybrid-resolution
model for detecting faces with small and large resolution in
a scene. The context-aware neural network architecture used
in this work employs a very large receptive field so as to
account for both types of resolution. First, for an input image
a coarse pyramid is built that includes a 2X interpolation of
the image. The scaled image is subsequently passed through a
ResNet101 CNN architecture [13]. The ResNet101 is trained
on 25 templates of the WIDER FACE dataset [25]. Addi-
tionally, features from different stages of the network are
aggregated to enhance the classification performance. Finally,
a non-maximum suppression is performed to get the detected
face boundaries for the input image. The published results on
FDDB dataset [17] showcase that the approach outperforms
state-of-art algorithms for face detection. It performs well for
images with large faces as well as for crowd images with
numerous small faces. Therefore, we select this face detector
for identifying the presence of a person in each viewport and
process the detected faces for visual attention modelling.

Based on the evidence that the viewing behaviour of users
wearing HMDs follows a Gaussian distribution [5], and that
the area falling within -30° to +30° is exhaustively explored,
the detected faces lying in this region are given a higher
weight.

The face selection approach used in this work can be
summarized as follows:

1) for each detected face f , the distance df from the center
of the viewport is computed;

2) the mean distance dm of all detected faces from the
center is computed for all viewports;

3) the faces in a viewport that lie within the mean distance
dm are considered for visual attention modelling. We set
the intensity of pixels with the detected faces to 1 and
the remaining pixels to 0.

Figure 2 shows an example of the face detection procedure
performed on a viewport. Figure 2 (a) shows the result of the
algorithm in [15] while Figure 2 (b) reports the outcome of
the proposed modified version of [15] in which only the faces
in the salient area around the viewport center are considered.

The output of this module is an attention inspired saliency
map, SalVi

high. When this map is available, it is combined with
the low-level saliency map (SalVi

low) for each viewport (Vi).

Fig. 2: Left image shows the detected faces using [15]. The
image on right shows the faces in the salient area around the
viewport center selected by the proposed algorithm.

The maximum value pixels among the two saliency maps are
selected for generating the final estimated saliency map [10]:

SalVi = max(SalVi

low, Sal
Vi

high). (3)

The obtained saliency maps for all viewports SalV (where
V = V1, V2, ..., VN and N is the total number of viewports
extracted from the input image) are then re-projected to the
equi-rectangular plane.

D. Equator Biased Weighting

In order to account for the fact that users wearing HMD
tend to look at contents close to the equator and rarely along
the periphery [5], an equator biased weighting on the face en-
hanced low-level equi-rectangular saliency map is performed
in accordance with [2], to generate the final saliency map. To
create a smooth equi-rectangular saliency map, we additionally
perform normalization and apply a Gaussian low-pass filter, to
obtain the final FLSmap.

III. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed method, exper-
iments are performed on the 360° image dataset presented in
the Grand Challenge “Salient360!” organized at the IEEE In-
ternational Conference on Multimedia and Expo (ICME) 2017
[11], [22]. The dataset contains 85 equi-rectangular images and
their corresponding saliency maps collected through subjective
tests. The performances of the proposed FLS model are then
compared with one baseline approach (GBVS) [12] and five
state-of-art works: JU [9], RM3 [2], and TU1, TU2, and TU3
[24]. The Correlation Coefficient (CC) [4] and the Kullback-
Leibler Divergence (KLD) [4] are used for comparing the
performance of the considered approaches with respect to
the available ground truths. The CC depicts the strength and
direction of a linear relationship between the estimated and
the ground truth saliency maps. Its value ranges between -1 to
+1, where a higher value depicts a better saliency estimation.
Whereas, the KLD is, in the present context, the difference
between the distribution of pixel intensities in the estimated
saliency map and the ground truth. A lower KLD indicates
better estimation of image saliency.

The parameters and thresholds used during the performed
experiments are detailed in the following. During the viewport
extraction, the horizontal and vertical sampling rates are set
at 40° and 35°, respectively. The dimension of viewports
are fixed at 1920 × 1080 pixels. We empirically set the
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TABLE I: (a) Results of CC and KLD averaged over all images in the dataset [11]. (b) and (c) are the list of best and worst
performing images with FLS approach, respectively. The results are presented on basis of best and worst CC and KLD for the
proposed FLS model.

(a) Results on overall dataset.

Model CC↑ KLD↓
FLS 0.63 0.57
TU1 [24] 0.62 0.75
TU2 [24] 0.56 0.64
RM3 [2] 0.52 0.81
JU [9] 0.57 1.14
TU3 [24] 0.44 1.09
GBVS [12] 0.41 0.97

(b) Best performing images.

Metric P26 P81 P8 P17
CC 0.79 0.76 0.76 0.75

Metric P32 P26 P25 P5
KLD 0.25 0.27 0.28 0.3

(c) Worst performing images.

Metric P21 P63 P60 P11
CC 0.44 0.44 0.44 0.45

Metric P96 P57 P4 P68
KLD 2.04 1.13 1.02 0.83

tuning factors α, β and γ at 0.2, 0.2 and 0.6, respectively
(Equation (2)). The neural network architecture and related
parameters/weights for face detection are set according to [15].

For sake of clarity, in the following we briefly describe the
saliency estimation approach in the state-of-art works with
which we compared the proposed FLS. The JU approach [9]
combines only prominent low-level features such as texture,
contrast, edge boundary connectivity, hue, saturation and lumi-
nance for detecting salient regions in an image. A combination
of low and high level features are used in RM3 [2]. The
basic idea of our proposed FLS model is based on the work
presented in RM3. They consider the presence of a person
in an image as a driving criteria for saliency estimation.
Their work is divided into three modules, combination of hue
and saturation channels, GBVS on the hue component and
lastly, include presence of person as the high-level feature by
detecting skin tone, face and number of persons. Startsev et
al. [24] propose three saliency estimation models ensemble
of deep networks eDN (TU3), saliency attentive model SAM
(TU2) and a combination of eDN, SAM, and GBVS (TU1).

In Table I (a), the average values of CC and KLD metrics are
reported. The obtained results clearly depict that the proposed
FLS model outperforms the compared saliency estimation
approaches for both values of CC and KLD. The high-
level features that act on local regions exploit the content
information of the image. GBVS does not exploit the high-
level features for saliency estimation. The JU approach does
not involve any high-level feature for saliency estimation.
However, high-level features are very important for both 2D
and 360° images. The approach in RM3 exploits the Viola-
Jones face detector which fails to detect tilted or turned faces.
Moreover, they are also prone to illumination variance and
detection of faces in a crowd. In this direction, we exploit a
neural network architecture for detecting faces. The ensemble
of networks eDN employed in TU3 is trained using the salient
and non-salient regions. However, no specific learning module
is involved for identifying the objects in the image. The
LSTM-based CNN used in saliency attentive model SAM
(TU2) also has a similar limitation. However, the combination
of eDN, SAM and GBVS, over the continuity-aware image
projection (TU1) is found to be outperforming other existing
approaches (TU2, TU3, RM3, JU and GBVS), and is close to
our approach.

The proposed model (FLS) outperforms other models
mainly based on two aspects: the inclusion of entropy as low-
level feature and the modelling of user attention by considering
detected faces. Entropy accounts for the unexpectedness in an
image and thus helps us to understand the most diverse regions
in the image. This diversity is in regard to the pixel intensities
and hence is considered as a low-level feature.

The presence of a person in the scene attracts attention of
viewers [2], [10]. Therefore, detecting faces and weighting
them based on their impact on user attention helps to improve
the overall saliency estimation. The improvements in saliency
estimation obtained when considering the presence of human
subjects can be noted in Figure 3. The detection of faces
allows to improve the performances of the proposed algorithm
with respect to the case in which only the low-level features
are exploited. Table I (b) and (c) show the best and worst
performing images on the proposed FLS model.

From the performed analysis it results that, for some im-
ages, the estimated saliency map differs from the ground
truth. In these cases, the scenes contain high-level features,
different from faces, representing important clues for the
human attention. To cope with this issue, in future works,
other relevant features might be considered to improve the
estimation performances.

Another important observation from the worst performing
images is that, detecting saliency of images under low light is
very challenging.

IV. CONCLUSIONS

In this contribution, a face attention and low-level feature
based omni-directional image saliency estimation model is
presented. The approach unifies low and high-level features
for estimating 360° image saliency. The hue, saturation and
luminance feature channels are combined with GBVS and
entropy for estimating a low-level saliency map. Subsequently,
attention of users while viewing an omni-directional image
is modelled by detecting the presence of faces in the scene.
Moreover, only the detected faces that impact the overall visual
saliency are taken into account. The final saliency map is
generated by taking the maximum of the low-level saliency
map and the face saliency map. Experiments performed on
the ”Salient360!” 360° image dataset show that the proposed
approach outperforms the existing saliency techniques.

2019 27th European Signal Processing Conference (EUSIPCO)



(a) P23 (b) Ground Truth (c) Low-level saliency map (d) FLS with face detector

(e) P28 (f) Ground Truth (g) Low-level saliency map (h) FLS with face detector

(i) P62 (j) Ground Truth (k) Low-level saliency map (l) FLS with face detector

Fig. 3: First column shows images with faces that can attract visual attention. Second column shows the corresponding ground
truth saliency maps. Third column shows the low-level saliency map without using visual attention modelling. Fourth column
shows the estimated saliency by the proposed FLS model.
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