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Abstract—In this work, we study the problem of recovering
spherical harmonics coefficients from phaseless measurements
and evaluate the empirical performance of several well-known
algorithms. Apart from trivial ambiguities that arise naturally
from the properties of spherical harmonics, we will show that
when a specific class of equiangular sampling patterns is chosen
to construct the measurement matrix, another ambiguity appears
as well. Nevertheless, we will numerically show that recovery
can be achieved by carefully choosing the appropriate sampling
patterns. Furthermore, an application of this work in phaseless
spherical near-field antenna measurements will be addressed.

Index Terms—Phase retrieval, spherical harmonics, spherical
near-field measurements

I. INTRODUCTION

The classical problem of recovering a signal from magnitude
measurements, often called phase retrieval, is vastly studied in
different fields of research, from optical-imaging, crystallogra-
phy to wireless communications [1]–[3]. The original problem
deals with the estimation of Fourier coefficients from phaseless
Fourier transform. Various works try to tackle this problem,
either by finding the condition for uniqueness or by designing
an efficient algorithm to reconstruct the signal. However, it has
been observed in [4]–[6] that only multidimensional Fourier
transform has a unique signal recovery up to trivial ambigui-
ties. In 1-D case, even if the trivial ambiguities, i.e., rotation,
shifting, and reflected conjugate, are excluded, different signals
might have the same magnitude of Fourier transform. Such
ambiguities are classified as non-trivial ambiguities [7]–[9].
Existing works mainly show that uniqueness up to trivial
ambiguities can be guaranteed by adding a constraint on the
signal, such as minimum phase [9], masking measurements
[10], [11], and sparsity [12], [13].

Different from Fourier phase retrieval, related works on
phaseless measurements by random matrices or frames have
also been considered. For instance, in [14] the authors show
that for a signal with size N , then m ≥ 2N − 1 and
m ≥ 4N − 2 generic measurements are needed in order
to attain recovery guarantee up to global phase for any real
and complex signal, respectively. Along the same line, the
authors in [15] prove that O(N) and O(N logN) subgaussian
measurements are enough to have recovery guarantee in the
noiseless and noisy condition for real signals. For Gaussian
measurements, it has been shown in [16] that O(N logN)
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phaseless measurements are sufficient for perfect recovery
using a semidefinite program called PhaseLift. Recently, exten-
sive works have been done for both theoretical and algorithmic
perspective, as well as for different applications; see [6], [17],
[18], and the references therein.

In this paper, we study phaseless measurements of signals
on the 2-dimensional unit-sphere represented as spherical
harmonics expansion. Spherical harmonics form an orthogonal
basis for square-integrable functions on the unit sphere [19]. It
is widely used in different applications, for example, spherical
near-field antenna measurements [20], [21], earth magnetic
fields [22], neural networks [23], 3-D model descriptors [24]–
[26] and spherical microphone array [27].

Two issues arise in phase retrieval problems. First, to clas-
sify ambiguities that are incurred by phaseless measurements,
and second, to design an efficient recovery algorithm up to
trivial ambiguities. The authors in [28] considered ambiguities
for the solution of Helmholtz equations, which includes d-
dimensional spherical harmonics. They showed under which
conditions the ambiguities are restricted to general phase
ambiguity and complex conjugate operation. These cases
include particularly real-valued spherical harmonics and 2-
dimensional spherical harmonics. However, a complete char-
acterization of ambiguities still remains open in general.

Phase retrieval algorithms for spherical harmonics are stud-
ied from an empirical perspective, mainly in antenna measure-
ment applications. In this setup, far-field acquisition from near-
field measurements is formulated as a linear inverse problem.
In [29], the authors develop an iterative signal recovery algo-
rithm from phaseless near-field measurements. Similar to some
other works, in [30], [31], the techniques are mainly tailored
to its application in near-field to far-field transformation.
Nonetheless, they do not specify the sampling pattern used
to take phaseless measurements, nor they discuss the required
number of measurements. In [32], [33], the authors acquire
magnitude measurements from random combinations of probe
signals and use PhaseCut and Wirtinger flow algorithm to
reconstruct far-field patterns. It is shown numerically that the
number of required measurements is indicated to be around
5N for more than 90% success rate.

In this work, we consider the phase retrieval problem
for band-limited square-integrable functions on 2-sphere. We
consider different deterministic sampling patterns which are
widely used in applications. After classifying trivial ambi-

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



guities, it is shown that additional ambiguities arise if an
inappropriate sampling pattern, i.e., equiangular-type sampling
patterns, is chosen to construct the measurement matrix.
Afterwards, we empirically show that m ≥ 2N − 1 phaseless
measurements from several well-known sampling patterns are
sufficient to recover the signal by using PhaseLift [16].

This paper is organized as follows. In section II, the spheri-
cal harmonics are introduced. In section III, we will discuss the
ambiguity of phaseless measurements of spherical harmonics
expansion. Numerical experiments in terms of phase transition
diagrams and reconstruction of far-field patterns of the antenna
are depicted in section IV. Finally, the conclusion and future
works are discussed in section V.

A. Notation

The elevation and azimuth angles are denoted by θ and φ.
Vectors and matrices are presented by small bold and capital
bold letters, respectively. The set {1, ...,m} is denoted by [m].

II. DEFINITIONS AND BACKGROUNDS

Definition 1 (Complex spherical harmonics). Spherical har-
monics of degree 0 ≤ l ≤ ∞ and order −l ≤ k ≤ l are
defined as follows:

Ykl (θ, φ) = Nk
l P

k
l (cos θ)e

jkφ (1)

where Nk
l =

√
2l+1
4π

(l−k)!
(l+k)! is the normalization factor and

P kl (cos θ) is the associated Legendre polynomials of degree l
and order k. For k = 0, the associated Legendre polynomials
become Legendre polynomials Pl(cos θ).

Spherical harmonics can also be expressed in the real case
as given below.

Definition 2 (Real spherical harmonics). For given degree 0 ≤
l ≤ ∞ and order −l ≤ k ≤ l, real spherical harmonics are
given as:

Ykl (θ, φ) =


(−1)k

√
2Nk

l P
k
l (cos θ) sin(|k|φ) if k < 0

N0
l Pl(cos θ) if k = 0

(−1)k
√
2Nk

l P
k
l (cos θ) cos(kφ) if k > 0

(2)

Spherical harmonics are a basis for square-integrable func-
tions over S2. In other words, each function f ∈ L2(S2) can
be written in terms of spherical harmonics as:

f(θ, φ) =
∞∑
l=0

l∑
k=−l

f̂kl Ykl (θ, φ). (3)

This is also called the S2-Fourier expansion with Fourier
coefficient f̂kl where

f̂kl =

∫ 2π

0

∫ π

0

f(θ, φ)Ykl (θ, φ) sin θdθdφ. (4)

Spherical harmonics are orthonormal with respect to the
uniform measure on the sphere dν = sin θdθdφ, namely:∫ 2π

0

∫ π

0

Ykl (θ, φ)Y
k′
l′ (θ, φ) sin θdθdφ = δll′δkk′ (5)

where δll′ is Kronecker delta. In this work, instead of infinite
expansion, we suppose the functions are band-limited.

Definition 3 (Band-limited functions). A function f ∈ L2(S2)
is band-limited with bandwidth B if it is expressed in terms
of spherical harmonics of degree less than B. The degree and
order of spherical harmonics can be written as 0 ≤ l ≤ B− 1
and −l ≤ k ≤ l.

The sensing matrix A is constructed using following entries

Ap,q = Yk
(q)

l(q) (θp, φp), (6)

where p ∈ [m] is the index of a sampling point and q ∈ [N ] is
an index used to provide the degree and order of each basis,
l(q), k(q), belonging to the set JS :

JS = {(l, k) | 0 ≤ l ≤ B − 1,−l ≤ k ≤ l} (7)

where |JS | = N = B2. It can be seen that the set JS contains
combinations between permissible degrees and orders, each
pair corresponding to a column.

Definition 4 (Mapping and measurement). The absolute and
squared measurement are defined as following:

A1(x)p := |〈ap,x〉| and A2(x)p := |〈ap,x〉|2 for p ∈ [m]
(8)

where the collection of measurements vector from spherical
harmonics expansion are given by A = {ap}p∈[m] ∈ CN .

III. AMBIGUITIES IN PHASELESS MEASUREMENTS

A. Ambiguity in phaseless complex spherical harmonics

Identical to the Fourier case, ambiguities could also be
observed in phaseless spherical harmonics measurement due
to certain properties in spherical harmonics. Consider mea-
surement matrix A = {ap}p∈[m] ∈ CN from band-limited
spherical harmonics expansion as given in (6) and its vector
coefficients x ∈ CN , with degree and order as in (7). Then
the following ambiguities occur:

1) The rotated signal y = xejα ∈ CN for α ∈ [0, 2π) has
the same intensity measurement.

2) A reflected conjugate signal y = x has the same
intensity measurement.

Property 1 is a trivial implication of phaseless measurements.
For the second part, note that the complex conjugate of
spherical harmonics is given by:

Ykl (θ, φ) = Y−kl (θ, φ) (9)

Therefore a function f with coefficients f̂kl has the same
phaseless measurement as the function g defined by coeffi-
cients ĝkl = (−1)kf−kl for all elements in the set JS . These
coefficients ĝkl and f̂kl are different in general for complex
signals. Conjugate symmetry in complex spherical harmonics
produces an ambiguity between positive and negative order k
as well as their sign. Since we are dealing with magnitude
measurement, this ambiguity cannot be avoided and could
indeed yield a wrong estimation.
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B. Ambiguity in phaseless real spherical harmonics

The above discussion on complex spherical harmonics im-
plies directly that if the coefficients f̂kl are real, the ambiguities
are restricted to the mere phase ambiguity. Therefore, if we
construct a matrix from real spherical harmonics, the trivial
ambiguities consist of phase ambiguities.

An inappropriate sampling pattern, however, can aggravate
the set of ambiguities significantly even in the real case.
Consider, as an example, the equiangular sampling pattern,
which is widely used in many applications because of its
simplicity. Although the following proposition generally holds
for complete measurements, the result also holds for phaseless
measurements.

Proposition 5 (Ambiguity-incurring sampling patterns). Con-
sider real spherical harmonics expansions of bandwidth B.
Let the sampling points (θp, φp) be chosen as (θp, (B− 2)θp)
for p ∈ [m]. Suppose that the coefficients of a function f is
defined as follows:

f̂kl =

{
cl k = 0, l+B is an odd number
0 otherwise

(10)

Then there is function g with a single non-zero coefficient ĝ11 =
d11 such that for all p ∈ [m]:

B−1∑
l=0

N0
l Pl(cos θp)cl = N1

1P
1
1 (cos θp) sin

(
(B − 2)θp

)
d11

In other words, the functions f and g cannot be distinguished
using neither complete nor phaseless measurements.

Proof. Let assume we have an odd B, even l and x = cos θ.
The Legendre polynomials can be written as the following
[34] [p.24, Eq.1-62] : Pl(x) =

∑b l2 c
r=0 η

l
rx
l−2r where ηlr =

(−1)m(2l−2r)!
2lr!(l−r)!(l−2r)! . Hence, we will obtain:

B−1∑
l=0
l,even

N0
l cl

b l2 c∑
r=0

ηlrx
l−2r =

( B−1∑
l=0
l,even

N0
l clη

l
l
2

)
+ . . .+

( B−1∑
l=B−3
l,even

N0
l clη

l
l
2−

B−3
2

)
xB−3 +N0

B−1η
B−1
0 cB−1x

B−1

(11)
In addition, since P 1

1 (cos θ) = − sin θ, we can write as the
following

P 1
1 (cos θ) sin

(
(B − 2)θ

)
=

cos
(
(B − 1)θ

)
− cos

(
(B − 3)θ

)
2

=
1

2

(
TB−1(x)− TB−3(x)

)
(12)

where Tl(x) is the Chebyshev polynomials of the first kind and
can be represented as the following [35][Chap.5, Eq 5.34] :
Tl(x) =

∑b l2 c
q=0 ε

l
qx
l−2q where εlq = (−1)q2l−2q−1 l

l−q
(
l−q
q

)

for l > 0. From this expression, we can expand (12) as the
following

N1
1

d11
2

(
εB−10 xB−1 +

B−3
2∑

q=0

(
εB−1q+1 − εB−3q

)
xB−3−2q

)
(13)

A linear system of equations can be constructed from (11) and
(13). By imposing the structure of a lower triangular matrix
and a forward substitution, the ratio of the coefficients can be
derived.
N0
B−1η

B−1
0 0 . . . 0

N0
B−1η

B−1
1 N0

B−3η
B−3
0 . . . 0

.

.

.

.

.

. . . . 0

.

.

.

.

.

.
. . . 0

N0
B−1η

B−1
B−1

2

N0
B−3η

B−3
B−3

2

. . . N0
0η

0
0




cB−1

d11cB−3

d11

.

.

.

.

.

.
c0
d11

 =



N1
1 ε
B−1
0
2

N1
1
(
ε
B−1
1 −εB−3

0

)
2

.

.

.

.

.

.

N1
1

(
ε
B−1
B−1

2

−εB−3
B−3

2

)
2


Hence, we will get the ratio starting from cB−1

d11
, cB−3

d11
until

c0
d11

.
The same argument can be used to prove for even B and

odd l.

Remark 6. For B = 4 we have well-known equiangular
sampling pattern, where θp = (p−1)π

m−1 and φp = 2(p−1)π
m−1 for

p ∈ [m]. Therefore, for arbitrary B ≥ 3, there are coefficients
cl and d11 with respect to the ratio as discussed in the previous
proposition.

Proposition 5 shows that if there is a linear dependency
between angles on elevation θ and azimuth φ, then there
are linearly dependent columns from real spherical harmonics
expansion. The condition in proposition 5 can be tailored to
phaseless measurements. One can directly show the ratio of the
coefficients, i.e., ± cB−1

d11
, ± cB−3

d11
, . . . ,± c0

d11
, will be obtained as

in the proof of proposition 5. As a result, ambiguities appear
in the reconstruction of spherical harmonics coefficients. How-
ever, it is quite challenging to certify a general condition of
sampling pattern that preserves uniqueness. In the following,
we will observe the numerical evaluation with several well-
known sampling patterns and algorithms.

IV. NUMERICAL EXAMPLE

In this section, numerical experiments of phase retrieval by
using algorithms in phasepack library [17] are performed. For
the semidefinite program, we use CVX platform [36]. Several
well-known sampling patterns that are implemented in this
paper are also discussed in [37], [38]. In addition, we will
impose structured spherical harmonics coefficients as in the
property 2, i.e., conjugate symmetry of coefficients f̂−kl =

(−1)kfkl . This structure is not contrived since it appears in the
spherical near-field antenna measurements [21], [39], [40] and
transforms the complex spherical harmonics into real spherical
harmonics. In the next section, we will numerically evaluate
the recovery performance by using phase transition diagram.
Furthermore, the application in the phaseless spherical near-
field antenna measurements is given.
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A. Phase transition diagram

In Figure 1, numerical experiments of phaseless measure-
ments by using several sampling patterns and algorithms are
evaluated. In this setup, we consider band-limited functions
of bandwidth B = 6. We run 10 trials for a given signal size
N = B2 and classify the recovery as correct if the following
holds :

‖x− x̂ejα‖2
‖x‖2

≤ ε (14)

where x, x̂ ∈ CN are the original and its estimated signal
respectively. The variable α ∈ [0, 2π) is a phase ambiguity
and the threshold is given as ε = 10−3. It is clear that for
all sampling patterns, PhaseLift gives higher success recovery
than other algorithms. Nonetheless, PhaseLamp delivers a
similar performance as PhaseLift for spiral sampling. On the
contrary, all algorithms fail to recover the signal for equian-
gular sampling, in which confirms the result in proposition
5. Figure 2 presents specific phase transition diagrams for
PhaseLift. Band-limited B = {4, 5, . . . , 10} and N = B2

Fig. 1. Phase transition of different algorithms

with 10 trials are performed in this setting. The experiments
show that if sampling patterns are properly chosen, the number
of measurements m ≥ 2N − 1 is enough to recover the
coefficients using PhaseLift. (14).

B. Phaseless spherical near-field antenna measurements

One of the applications of phaseless measurements of
spherical harmonics expansion is the spherical near-field mea-
surements. In this paper, the array of dipole antennas with
a size of coefficients N = 96 will be used. It can be seen
from Figure 3 that m = 2.5N measurements are enough to
recover near-field coefficients by using PhaseLift, which is
smaller than the works in [29], [32], i.e., m > 4N . In the same
manner, equiangular fails to recover the correct coefficients as
well as the reconstruction of the correct far-field pattern.

Fig. 2. Phase transition of different sampling patterns with PhaseLift

Fig. 3. Far-field reconstruction from phaseless measurement

V. CONCLUSION AND FUTURE WORKS

In this work, we discuss several ambiguities when con-
sidering phaseless measurements in spherical harmonics ex-
pansion, which includes trivial ambiguities and amiguities
that arise from imporper sampling patterns. Moreover, it has
been numerically shown that recovery of spherical harmonics
coefficients are possible by carefully choosing appropriate
sampling patterns. In future works, analyzing the number of
measurements to guarantee a unique recovery would also be
beneficial. In most cases, the coefficients of the antenna under
test are sparse, which opens up the possibility to extend the
problem to compressive phase retrieval.
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