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Abstract—We present a novel relaxed maximum likelihood
solution to the problem of direct localization of multiple narrow-
band sources by partly calibrated arrays, i.e., arrays composed
of fully calibrated subarrays yet lacking inter-array calibration.
The proposed solution is based on eliminating analytically all the
nuisance parameters in the problem, thus reducing the likelihood
function to a maximization problem involving only the location
of the sources. The performance of the solution is demonstrated
via simulations.

Index Terms—Partly calibrated arrays, direct localization,
relaxed maximum likelihood, signal subspace.

I. INTRODUCTION

PArtly calibrated arrays are arrays composed of fully
calibrated subarrays, yet lacking inter-array calibration.

Such arrays are common in large scale systems composed of
small subarrays with large inter-array distances, as is the case
in multi-site surveillance systems, multi-site communication
systems, and multi-site radar systems.

A powerful model for partly calibrated arrays, referred to
as the Partly Calibrated Array (PCA) model, was introduced
by See and Gershman [1] in the problem of direction finding.
This model can cope with a variety of uncertainties in the
direction finding problem, including unknown subarrays dis-
placements and unknown phase offsets between the subarrays.
It can be regarded as a generalization of a more limited
model, introduced by Pesavento et al. [2], addressing partly
calibrated arrays composed of identically oriented subarrays
with unknown subarray displacements. Apart from introduc-
ing the PCA model, [1] presented a MUSIC-like technique
for estimating the direction-of-arrival of multiple narrowband
sources and the Cramer-Rao bound (CRB) for this problem.
This work was followed by Lie et al. [3] and Mavrychev
et al. [4] who introduced MVDR-like techniques. Liao and
Chan [5] exploited the special structure of the uniform lin-
ear array to reduce the computational complexity. A sparse
recovery approach for direction finding in partly calibrated
arrays composed of subarrays with unknown displacements
was introduced by Steffens and Pesavento [6].

Independently of this work on direction finding, Weiss [7]
and Weiss and Amar [8] introduced the PCA model in the
direct localization problem, to cope with the unknown propa-
gation to the subarrays. Direct localization, advocated first in
[10]-[11] and further developed in [12]-[21], is a localization
scheme in which the location is estimated directly from the
data in one-step, as opposed to the more conventional two-
step scheme, where the directions-of-arrival to the subarrays
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are estimated in the first step and then, in the second step, the
location is estimated using triangulation. Direct localization
provides not only higher accuracy at low signal-to-noise and
low signal-to-interference ratios, but not less importantly,
reduced ambiguity. This is because the data association step,
needed in the two-step procedure and prone to ambiguity
errors, is eliminated. Apart from introducing the PCA model,
[7] introduced the maximum likelihood solution for a single
narrowband source, while [8]-[9] extended this approach to
wideband sources, introduced MUSIC-like solution for sources
with unknown waveforms and a maximum likelihood solution
for sources with known waveforms, as well as the CRB for
these problems.

In this paper we present a novel and computationally
efficient relaxed maximum likelihood solution to the problem
of direct localization by partly calibrated arrays. Note that
since direction finding can be considered as a special case of
direct localization, corresponding to the case that the sources
are in the far-field of the array, our solution apples to both
problems.

The rest of the paper is organized as follows. The problem
formulation is presented in section II. Section III presents the
”relaxed” maximum likelihood solution. Simulation results are
discussed in section IV, and the conclusions are provided in
section V.

II. PROBLEM FORMULATION

Consider an array composed of L fully calibrated subarrays,
each composed of Ml antennas with arbitrary locations and
arbitrary directional characteristics. Let M =

∑L
l=1Ml denote

the total number of antennas. Assume that Q sources, located
at locations {pq}Qq=1, with pq ∈ RD×1, D = 1, 2, 3, and
emitting signals {sq(t)}Qq=1, are impinging on the array.

To capture both the direct localization and the direction
finding problems, we allow the dimension D to be a parameter.
If the sources are in the far-field of the array then either D = 1,
if both the sources and the array are confined to a plane, or
D = 2, if otherwise. In case the sources are in the near-field
of the array, then either D = 2, if both the sources and the
array are confined to a plane, or D = 3, if otherwise.

We further make the following assumptions regarding the
emitted signals, the array and the noise:

A1: The number of sources Q is known.
A2: The emitted signals are narrowband, i.e, their band-

width is much smaller than the reciprocal of the propagation
time across the array, and centered around ωc.

A3: The emitted signals are unknown with zero mean and
uncorrelated.
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A4: The array is synchronized in time, but there is unknown
phase offsets between the subarrays.

A5: The locations of the subarrays are known, but with an
uncertainty of σ2

a.
A6: The propagation model is spherical waves (it degener-

ates to plane waves if the sources are in the far-field).
A7: The steering vectors of the subarrays toward any

potential location p, given by {al(p)}Ll=1, are known and have
unit norm, i.e., ‖al(p)‖ = 1.

A8: The additive noises at the subarrays are independent of
the signals and independent of each other, and distributed as
complex Gaussian with zero mean and covariance σ2

nIM .
Assumptions A1-A3 and A6-A8 are conventional and do

not need further justification. Assumptions A4-A5 reflect the
current limitation of the Global Positioning System (GPS). A4
reflects the current accuracy of the GPS time data - typically
10 ns - which is good enough for time synchronization in the
case of narrowband signals, but not good enough for phase
synchronization. A5 reflects the current accuracy of the GPS
location data, which is typically 5-10 meters.

Under these assumptions, the PCA model for the Ml × 1
vector of the complex envelopes of the received signals at the
l-th subarray is given by

xl(t) =

Q∑
q=1

bl,qal(pq)sq(t− τl(pq)) + nl(t), (1)

where bl,q is a complex coefficient associated with the prop-
agation of the q-th signal to the l-th subarray, al(pq) is the
steering vector of the l-the subarray toward location pq , τl(pq)
is the delay from pq to the l-th subarray, and nl(t) is the noise
at the l-th subarray.

The partly calibrated nature of the array is embodied by
the set of QL complex coefficient {bl,q}, q = 1, ..., Q; l =
1, ..., L, assumed to be unknown parameters. In our problem
these parameter capture the combined effect of the unknown
propagation to the subarrays, the unknown subarrays displace-
ment due to subarrays location error, and the unknown phase
offset between subarrays.

The narrowband assumption A2 implies that the time delays
are well approximated by phase shifts, which allow us to
rewrite (1) as

xl(t) =

Q∑
q=1

bl,qal(pq)sq(t)e
−jωcτl(pq) + nl(t), (2)

where j =
√
−1. Assuming the array is sampled N times, we

can express the signals received by the l-th subarray as

Xl = Al(P)BlS+Nl, (3)

where Xl is the Ml ×N matrix

Xl = [xl(t1), ...,xl(tN )], (4)

Al(P) is the Ml×Q matrix of the steering vectors towards the
Q locations (to simplify the notation, the explicit dependence
on the locations P = {p1, ...,pQ} will be sometimes dropped)

Al(P) = Al = [al(p1)e
−jωcτl(p1), ...,al(pQ)e

−jωcτl(pQ)],
(5)

Bl is a Q×Q diagonal matrix

Bl = diag(bl), (6)

with
bl = [bl,1, ..., bl,Q]

T , (7)

S is the Q×N signals matrix

S = [s(t1), ..., s(tN )] = [sT1 , ..., s
T
Q], (8)

with
s(t) = [s1(t), ..., sQ(t)]

T , (9)

and Nl is the Ml ×N matrix of the noise

Nl = [nl(t1), ...,nl(tN )]. (10)

To equalize the contributions of the subarrays, we normalize
their power, namely set

tr(XlX
H
l ) = 1, l = 1, ..., L (11)

where tr() denotes the trace operator and H denotes the
conjugate transpose.

We can now state the direct localization problem as follows:
Given the received data {Xl}Ll=1, estimate the Q locations
{pq}Qq=1.

III. RELAXED MAXIMUM LIKELIHOOD SOLUTION

Regarding the signals matrix S and the coefficient matrices
{Bl} as unknown parameters, it follows from (3) and the
Gaussian noise assumption A8 that the maximum likelihood
cost function is given by

P̂ = argmin
P,{Bl},S

L∑
l=1

‖ Xl −Al(P)BlS‖2F . (12)

Note that this cost function is a multidimensional nonlinear
minimization with a total of DQ+2QL+2QN real unknown
parameters, corresponding to P, {Bl}, and S, respectively. Out
of this large number of unknowns, only the DQ unknowns
corresponding to the locations P are of our interest, while the
other are considered as nuisance parameters.

Since the exact solution of (12) yields a complicated ex-
pression which does not seem to enable the elimination of all
the nuisance parameters, we next present a relaxed maximum
likelihood solution which enables the desired elimination and
yields a concentrated likelihood involving only the unknown
locations of the sources.

Our first step is to eliminate the unknown coefficients {Bl}
by expressing them in terms of the other parameters P and
S. To this end, note that Bl appears only in the l-th term
in (12), implying that it can be estimated by the following
minimization problem:

B̂l = argmin
Bl

‖ Xl −AlBlS‖2F (13)
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where we hold Al and S fixed. Denoting by Jl the cost
function of (13), we have

Jl = tr((Xl −AlBlS)
H(Xl −AlBlS))

= tr(XH
l Xl)− tr(BH

l AH
l XlS

H)− tr(AlBlSX
H
l )

+ tr(BH
l AH

l AlBlSS
H). (14)

Dropping the terms which do not contain Bl, we can rewrite
it as

Jl = −tr(AH
l XlS

HBH
l )− tr(AlSX

H
l diag(bl))

+ tr(SSHBH
l AH

l Aldiag(bl)). (15)

Now, equating to zero the derivative with respect to bl, using
the well known complex differentiation rules [22] and the
following matrix differentiation rule [23],

∂

∂b
tr(Adiag(b)) = diag(A), (16)

we get

diag(SXH
l Al) = diag(SSHBH

l AH
l Al). (17)

To solve this equation for Bl, we first relax the equality of
the diagonals of the two marices to an equality of the whole
matrices, yielding

SXH
l Al = SSHBH

l AH
l Al. (18)

Next, we relax the constraint that Bl is diagonal and allow it
to be an arbitrary matrix, which enables us to straightfowardly
solve this equation for Bl, yielding

B̂l = (AH
l Al)

−1AH
l XlS

H(SSH)−1. (19)

Now, multiplying from the left and right by Al and S,
respectively, we get

AlB̂lS = Al(A
H
l Al)

−1AH
l XlS

H(SSH)−1S (20)

or alternatively,

AlB̂lS = PAl
XlPSH (21)

where PAl
is the projection matrix on column span of of Al

PAl
= Al(A

H
l Al)

−1AH
l , (22)

and PSH is the projection matrix on the column span of SH

PSH = SH(SSH)−1S. (23)

Substituting (21) into (12), yields

P̂ = argmin
P,S

L∑
l=1

‖ Xl −PAl(P)XlPSH‖2F , (24)

which, using the properties of the trace operator and the
projection matrix, with some straightforward manipulations,
reduces to

P̂ = argmax
P,S

tr(PSH

L∑
l=1

XH
l PAl(P)Xl). (25)

This expression can be interpreted as a search for the locations
P and the signal matrix S for which there is maximum
correlation between the signal subspace defined by PSH and

the sum of projections of Xl on the signal subspaces defined
by PAl(P), l = 1, ..., L.

To further eliminate the unknown parameters of the matrix
S, we next evaluate (25) for the case of noncoherent sig-
nals1, i.e. when the signal subspace defined by PSH is Q-
dimensional. in this case we can express PSH as

PSH = S̃H S̃, (26)

where S̃ obeys
S̃S̃H = IQ, (27)

with IQ denoting the Q×Q identity matrix. Substituting this
expression in (25), using the properties of the trace operator,
we get

P̂ = argmax
P,S̃; S̃S̃H=Iq

tr(S̃(
L∑
l=1

XH
l PAl(P)XlS̃

H). (28)

Maximizing this expression over S̃, holding P constant, we
get

ˆ̃SH(P) = ṼS(P) = [ṽ1, ..., ṽQ], (29)

where ṽq denotes the N × 1 eigenvector corresponding to the
q-th eigenvalue of the N × N matrix

∑L
l=1 X

H
l PAl(P)Xl.

Substituting this expression for ˆ̃S(P) back into (28), we get

P̂ = argmax
P

Q∑
q=1

λq(

L∑
l=1

XH
l PAl(P)Xl), (30)

where λq() denotes the q-th eigenvalue of the bracketed
matrix.

For large N , computing the eigenvalues of the N × N
matrix XH

l PAl(P)Xl may be prohibitive. We next show how
to reduce the dimensionality of this problem.

To this end, denote by PA(P) the M ×M block-diagonal
matrix

PA(P) = blkdiag(PAl
), (31)

by X is the M ×N matrix of the sampled data

X = (XT
1 , . . . ,X

T
L)
T , (32)

and by R̂ = XXH the M ×M sample-covariance matrix of
the array

R̂ =

X1X
H
1 · · · X1X

H
L

...
. . .

...
XLX

H
! · · · XLX

H
L

 =

R̂1,1 · · · R̂1,L

...
. . .

...
R̂L,1 · · · R̂L,L

 .

(33)
Now, using the properties of the projection matrix and the
fact that the eigenvalues of a product of two matrices are
unchanged by their permutation, we have

λq(
L∑
l=1

XH
l PAl(P)Xl) = λq(PA(P)R̂PA(P)), (34)

1The case of coherent signals is also of interest, and will be addressed in
future research.
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which when substituted into (30) yields

P̂ = argmax
p

Q∑
q=1

λq(PA(P)R̂PA(P)). (35)

To further simplify this expression, let Ã denote the block-
diagonal matrix

Ã = blkdiag(Ãl), (36)

where Ãl is given by

Ãl = Al(A
H
l Al)

−1/2. (37)

Using this notation we can rewrite PA as

PA = ÃÃH = blkdiag(ÃlÃ
H
l ), (38)

which implies, using the invariance of the eigenvalues of a
product of matrices to their cyclic permutation, that

λq(PAR̂PA) = λq(PAPAR̂) = λq(PAR̂) = λq(Ã
HR̂Ã).

(39)
Substituting this result into (35), we get

P̂ = argmax
P

Q∑
q=1

λq(Ã
H(P)R̂Ã(P)) (40)

Note that since the matrix ÃH(P)R̂Ã(P) is LQ× LQ, and
since typically LQ � N , the computational complexity of
the solution (40) is significantly smaller than that of (30). To
reduce the computational load of the Q-dimensional search
over P, we propose to use the alternating projections (AP)
algorithm [24], which transforms a Q-dimensional search into
an iterative process involving only single source searches.
Denote the cost function by

g(P) =

Q∑
q=1

λq(Ã
H(P)R̂Ã(P)). (41)

In the proposed iterative search algorithm, the number of
sources is increased from q = 1 to q = Q, with the q-th
step involving a maximization over pq , with the other q − 1
pre-computed locations held fixed:

p̂q = argmax
pq

g(P(0)
q ) (42)

where
P(0)
q = (p̂1, ..., p̂q−1,pq). (43)

IV. SIMULATION RESULTS

The performance of the proposed solution was evaluated for
the cases of two and three sources, randomly positioned in a
squared area of 1 square kilometer. Four uniform linear arrays
of 8 elements (each) were positioned in the four corners of the
squared area. The sources were simulated as uncorrelated unit
power QPSK signals, each one transmitting 1,000 i.i.d. QPSK
symbols. The standard free space path loss (FSPL) model was
used to compute the received power in each array position:
FSPL = ( λ

4πd )
2, with λ = 12.5cm (carrier frequency of

2.4GHz), and d is the source-to-array distance in meters.

Fig. 1. Localization of 2 (top) and 3 (bottom) sources, by 4 uniform linear
arrays of 8 elements, positioned in the 4 corners of the area.

In addition, an additive white Gaussian noise (AWGN) with
variance 0.1 was simulated for all arrays elements. The results,
presented in Fig. 1 clearly demonstrate the high accuracy of
the proposed solution.

V. CONCLUSIONS

We have presented a novel relaxed maximum likelihood
solution to direct localization in partly calibrated arrays which,
by eliminating analytically all the nuisance parameters in the
problem, reduced the solution to a maximization problem over
the sources’ locations. The resulting maximization problem
is computationally complex for more than one source. To
simplify the computation, we propose using the AP technique
[24], which transforms the multidimensional maximization to
iterative one-dimensional maximizations.
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