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Abstract—Sequential data such as video are characterized
by spatio-temporal correlations. As of yet, few deep learning
algorithms exploit them to decrease the often massive cost during
inference. This work leverages correlations in video data to
linearize part of a deep neural network and thus reduce its
size and computational cost. Drawing upon the simplicity of
the typically used rectifier activation function, we replace the
ReLU function by dynamically updating masks. The resulting
layer stack is a simple chain of matrix multiplications and bias
additions, that can be contracted into a single weight matrix and
bias vector. Inference then reduces to an affine transformation of
the input sequence with these contracted parameters. We show
that the method is akin to approximating the neural network with
a first-order Taylor expansion around a dynamically updating
reference point. The proposed algorithm is evaluated on a
denoising convolutional autoencoder.

Index Terms—Deep neural networks, video, sequential data,
linearization, compression

I. INTRODUCTION

Sequential data in natural scenes typically changes little
between samples, especially in video recordings of surveil-
lance or highway driving. The high degree of correlation
between consecutive samples implies that an almost linear
model can be used for a finite sequence of frames. This
property would benefit current deep neural networks (DNNs)
used to process such video sequences. State-of-the-art DNNs
for visual tasks consist of millions of neurons, and hold tens
of millions of parameters. Computing the output of anyone of
these networks for a single input frame requires billions of
floating point multiply-accumulate operations (MACs). This
substantial inference cost of neural networks on video is a
major limiting factor for their use in mobile devices and
always-on scenarios.

Based on the assumption of slowly changing input in video
tasks, this paper proposes a novel method to linearize part
of a DNN or an entire DNN around a dynamically updating
reference point, similar to a first-order Taylor expansion of the
network function. The resulting DNN is compressed in terms
of number of neurons, parameters, and operations, allowing
for efficient inference on sequential data.

This work has been supported by the Samsung Advanced Institute of
Technology, the ETH Zurich and the University of Zurich.

Our network approximation method draws upon two com-
mon characteristics of DNNs: 1) The composite structure
of neural networks where the mathematical function of a
layer consists of a matrix multiplication with the output of
the previous layer. 2) The simplicity of the frequently used
Rectifying Linear Unit (ReLU) activation function. With the
element-wise activation function replaced by a mask vector, as
proposed here, we exploit the multiplicative nature of DNN
layers to contract a stack of layers into a single layer. This
layer, represented by a single weight matrix, approximates
the function of the original layer stack around a reference
point. The reference point, along with the contracted weight
matrix, can be updated when temporal changes in the input
sequence become large. These updates are expected to be
sparse in slowly varying scenes. In the meantime, inference
is done cheaply using the contracted weight matrix. We apply
the proposed linearization and compression method to an
autoencoder CNN for denoising temporal MNIST digits.

II. RELATED WORK

1) Network compression: Several groups have explored
methods to make DNNs more efficient in processing sequential
data by drawing upon redundancies in the input stream.

In the context of training recurrent neural networks (RNNs),
the authors of Skip RNN [1] employ a control variable for
each neuron that determines whether the state is updated or
copied over from the previous time step. A regularization term
encourages the model to use a reduced number of state updates
during training. This update skipping can be seen as a zero-
order approximation: The state is kept constant (copied over).
In our case, replacing nonlinearities with masks still allows
changes to be propagated through these masks, making it a
first-order approximation.

Delta RNNs [2] capitalize on the stability of RNN activation
patterns by transmitting neuron activations only when exceed-
ing a threshold. Similarly, change-based CNNs [3] exploit
spatio-temporal sparsity of pixel changes in video data to skip
computations of neurons when their activation level changes
by less than a certain threshold across frames. The resulting
accuracy drop is proportional to the targeted efficiency gain
and the difficulty of the dataset. In contrast, our method does
not discard small activation changes via a local threshold; all
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changes are propagated through the mask that replaces the
nonlinearity.

Other methods to compress deep neural networks for effi-
cient inference include, low-precision models [4]–[6], pruning
of redundant weights [7], and training convolutional architec-
tures with fewer connections [8], [9].

2) Interpolation between key frames: An elegant frame-
work for video recognition has been developed by [10]. It
runs the DNN on sparse key frames and propagates their deep
feature maps to other frames via a flow field. The optical flow
is computed with a CNN that is trained end-to-end with the
video recognition model. The method is similar to ours in the
use of key frames, but differs in how inference is done between
key frames (propagating hidden layer states along flow vectors,
versus linearizing the network function and contracting a stack
of layers). Also, while the authors of [10] update the key
frames at regular intervals, we also test an input-driven update
predictor. Lastly, their method makes explicit use of temporal
correlation in video via optical flow whereas we implicitly
draw on this assumption to motivate a linear approximation.

3) Taylor expansions in DNNs: We show in Sec. III that our
network contraction method can be seen as a first order Taylor
expansion, where the derivatives are taken with respect to the
network input. Taylor expansions have been applied to neural
networks to explain nonlinear classification decisions [11], to
generate a class saliency map of a specific input [12], and
to analyze the learning convergence under various optimizers
[13].

III. METHODS

A. Activation masking and network contraction

In this work, we consider only feed-forward deep neural
networks. Each neuron in a network layer receives as input,
the linear combination of the outputs of the preceding layer
and applies a nonlinear activation function on this weighted
sum of inputs. For instance, an n-layer fully-connected ANN
has the following computational structure:

F (x) =Wnf
(
Wn−1 . . . f

(
W 1x+ b1

)
+

· · ·+ bn−1
)
+ bn, (1)

where F is the network output, x is the network input,
pairs (W k,bk) represent the weights and biases of layer
k ∈ [1, n], and f is the nonlinear activation function of a
neuron. Typically, the network output is also passed through a
final nonlinearity fout, e.g. a softmax in a classification task.
To simplify notation in the following equations, we do not
explicitly write this output nonlinearity, but imply that it is
applied as usual after a forward-pass through the network. A
common nonlinearity for hidden layers is the ReLU, and its
variant, the leaky ReLU:

f(zki ) =

{
zki if zki > 0

αzki otherwise.
(2)

The variable zki stands for the pre-activation of neuron i in
layer k, i.e. the summed output before applying the nonlinear-
ity. The leak parameter, α, defines the slope of the left branch
and typically has a small value (e.g. α = 0.1). In the case of
the standard ReLU, α = 0.

From (2), it is apparent that the element-wise application of
the (leaky) ReLU f in (1) is equivalent to the element-wise
multiplication with a mask mk:

F (x) =Wnmn−1 �
(
Wn−1 . . .m1 �

(
W 1x+ b1

)
+

· · ·+ bn−1
)
+ bn (3)

where � denotes the Hadamard product. In this work,
the Hadamard product takes precedence over the matrix-
multiplications, i.e. the mask mk is applied to the pre-
activation of layer k before multiplication with the weights
W k+1 of layer k + 1. The mask mk of layer k is a vector
whose length is equal to the number of neurons in layer k. Its
entries are defined by1

mk
i =

{
1 if zki > 0

α else.
(4)

Because matrix multiplications are associative, we can con-
tract any number of matrix-, mask-, and vector-products in
(4) into a single weight matrix Q and bias vector q (see also
Fig. 1a):

F (x) = Q
∣∣
x
x+ q

∣∣
x
, where (5)

Q
∣∣
x
=Wndiag(mn−1)�Wn−1 . . . diag(m1)�W 1,

q
∣∣
x
=Wnmn−1 �

(
Wn−1 . . .m1 � b1+

· · ·+ bn−1
)
+ bn. (6)

The key idea now is to use a sample x∗ to compute the
(Q,q)

∣∣
x∗

parameters once, and then to perform inference on
the next few samples in the sequence by using the much
simplified affine transformation (5).

This process is related to the linearization of a complicated
function (in our case the network F (x)) via Taylor expansion
around a reference point x∗:

TF (x) = F (x∗) + JF
∣∣
x∗
(x− x∗) + . . . , (7)

with JF
∣∣
x∗

= ∂F
∂x

∣∣
x∗

the Jacobian of F evaluated at x∗. We
determine the conditions under which our contracted network
CF (x), defined by

CF (x) = Q
∣∣
x∗
x+ q

∣∣
x∗
, (8)

resembles a Taylor approximation around the reference point
x∗. By construction (c.f. (1)), the contracted network exactly
equals the original network at the reference point:

1Because the mask depends on the current input sample, it could be written
as mk

∣∣
x

. We omit this subscript here for clarity and introduce it later.

2019 27th European Signal Processing Conference (EUSIPCO)



(a) (b)

Fig. 1. Illustration of network masking and contraction. (a) Activation func-
tions are first replaced by dynamically updating masks (triangles, cf. Eq. 3).
(b) Hidden layer weight and mask matrices are then contracted (Eq. 5).

CF (x∗) = Q
∣∣
x∗
x∗ + q

∣∣
x∗

= F (x∗). (9)

By using identity (9) to replace the zero-order term in (7), and
after some rearranging, we obtain:

TF (x) = q
∣∣
x∗

+
(
Q
∣∣
x∗
− JF

∣∣
x∗

)
x∗ + JF

∣∣
x∗
x+ . . . . (10)

Comparing coefficients of (8) and (10), we can see that
the contracted network is identical with a first-order Taylor
expansion if Q is equal to the Jacobian:

CF (x) = T
(1)
F (x) if Q

∣∣
x∗

= JF
∣∣
x∗
. (11)

In Sec. IV, we will show that this relation holds through our
experiments with a denoising autoencoder.

Having established a relationship between the contracted
network and the first-order Taylor approximation of the orig-
inal network, we now consider when to update the Q matrix
at a new reference point x∗. At x∗, the simplified affine
transformation (5) is exactly equivalent to a standard forward-
pass through the original multi-layer network. As the input
samples begin to deviate from the reference point, the masks
used for computing the contracted (Q,q)

∣∣
x∗

parameters re-
main accurate only under the condition that the neurons do not
change the sign of their activity z (c.f. (4)). For instance, if a
neuron i in layer k changes from being positively activated at
sample x∗ = xt to being negatively activated at sample xt+1,
then the corresponding entry in the mask vector mk

i should
be α instead of 1, and the (Q,q)

∣∣
xt

parameters introduce an
error. Note that such errors occur exclusively at sign changes:
Otherwise, the (Q,q)

∣∣
xt

parameters accurately encode the
network function even under arbitrarily large changes of zki .

To keep the network operation accurate even when activa-
tion signs are changing over the course of presenting an input
sequence, it is necessary to recompute the (Q,q) parameters
at appropriate intervals, using updated binary masks that
represent the state of network activations at the new reference

point. Thus, we face an accuracy-efficiency trade-off: The less
often the update of the (Q,q) parameters, the lower is the run-
time cost of inference, but the higher is the risk of inaccurate
activation masks.

The most straight-forward baseline criterion for mask up-
dates is the use of a regular update interval. The hyperparam-
eter in this case is the number of frames, n, before the mask
is updated. The advantages of using this criterion are that the
network output is easy to interpret and n can be related to
the expected savings in computations. Further, the criterion
offers a safety guarantee by limiting the longest period without
updates to n frames.

A more flexible criterion that accounts for direct changes
in input is by computing the pixel-wise square difference on
input images, i.e., the mean-square error (MSE) between the
current frame and the frame at the time of the last update. If
the MSE value surpasses a given threshold, a mask update is
triggered. These two update criteria are compared in Sec. IV
and Fig. 4.

IV. RESULTS

The network contraction method is implemented in Python
using Keras with the TensorFlow backend. We apply the
network contraction on a denoising task using a convolutional
autoencoder. The input sequence is a version of the MNIST
handwritten-digit dataset [14] where the images are sorted by
similarity (according to the pixel-wise mean-square-error). The
encoder section of the denoising autoencoder (DAE) consists
of two convolution layers followed by a fully-connected layer,
mapping the 28 × 28 gray-scale input images into a 16-
dimensional latent space. The decoder section consists of a
fully-connected layer and three transpose-convolution layers,
which map the 16-dimensional encoded representation back
into image space. In the denoising task, the input to the DAE
consists of the temporal MNIST digits corrupted by adding
normally distributed noise with standard deviation 0.5, and
the outputs are the denoised digits. The uncorrupted MNIST
samples serve as targets when training the DAE, and as
ground-truth at test time.

In the DAE experiment, we contract the decoder and leave
the encoder unchanged. The resulting architecture then con-
sists of two convolution layers and two fully-connected layers,
the last being the contracted decoder.

In Fig. 2, we count the number of activation sign changes in
the DAE between successive frames in the temporal MNIST
dataset. Each curve represents a layer, color-coded from dark
blue (lowest layer) to dark red (highest layer). Depicted are
the two convolution layers of the encoder (dark and light
blue), and the first two convolution layers of the decoder
(light and dark red). The other three layers of this architecture
are not shown because they do not have a ReLU activation
viable for masking. We first note that the number of activation
sign changes in the two transposed convolution layers of
the decoder are correlated. This is advantageous for network
contraction because it implies that the need to update masks is
synchronized across layers. Secondly, we observe a trend as in
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Fig. 2. Number of activation sign changes in the Denoising Auto-Encoder
architecture for the first 100 samples of the temporal MNIST dataset. The
dotted lines denote the median.

Fig. 3. Mask update indicators and accuracy metrics in the Denoising Auto-
Encoder architecture for the first 100 samples of the temporal MNIST dataset.

[15], where contiguity (the length of sequences of activations
with the same sign) increases with network depth. That is,
the lowest convolution layer in the encoder changes signs
much more often than higher layers, and the second transposed
convolution layer in the decoder has consistently fewer sign
changes than the first. These observations support our choice
to contract the decoder, but not the encoder.

In Fig. 3, we measure the mask update indicator MSE input
described in Sec. III. In this case, MSE input does not refer
to the noise-corrupted MNIST digits fed to the encoder, but
the latent representations fed to the decoder. The plot also
shows the MSE between output frames (MSE output), the MSE
between the output of the contracted model and the original
model (MSE vs original) and the MSE between the contracted
model and ground-truth (MSE vs target).

To examine if the MSE input metric is a good predictor of
when the mask updates are needed, we correlate the MSE input
curve in Fig. 3 with the number of activation sign changes in
Fig. 2 across the length of the sequence. The obtained Pearson
correlation coefficients of 0.8 and 0.78 in the two transposed
convolution layers of the decoder indicate a good correlation
between the input MSE and the actual need to update masks,
as measured by the number of activation sign changes.

Fig. 4. Loss (reconstruction MSE) plotted against the inverse mask update
rate for the DAE task on temporal MNIST.

Figure 4 illustrates the accuracy-efficiency trade-off for the
contracted DAE on temporal MNIST. The mask update rate is
controlled either by the hyperparameter n in case of updates
at every n-th frame, or by varying the threshold on the input
MSE. The fewer updates of the masks, the more savings in
computations (horizontal axis), and the higher the loss (vertical
axis). With regular mask update intervals (solid line), the loss
is consistently higher than the loss using the input MSE as
the update indicator (dashed line), highlighting the benefit of
a dynamic update criterion. Also shown is the performance of
a network trained with leaky ReLUs (diamond markers). This
model performs better because the leak makes the contracted
network more robust against outdated masks. The fourth curve
(dotted line) results from the first-order Taylor expansion of
the original network, and performs the same as the contracted
model. This experimental result supports the theoretical rela-
tion of our method with the Taylor approximations derived in
Sec. III-A.

Contracting the decoder reduces its number of parameters
by more than 8× (from 109 k to 13 k), the number of neurons
by more than 57× (from 45 k to 784), and the number
of operations by 1692× (from 44 M to 26 k). Despite this
significant compression, the contracted DAE maintains a good
denoising performance, as seen in the output video2. When
mask updates are triggered by MSE input on average every
third frame, the reconstruction MSE between the output of
the contracted model and the ground-truth is 0.023 (0.016 for
the original model).

Autoencoders are well-suited for network contraction be-
cause the latent representation of the DAE architecture is low-
dimensional, resulting in a negligible inference cost of the con-
tracted network. Another possible benefit of this architecture
is that much of the spatial dynamics of the input are absorbed
in the latent representation by the encoder, reducing the need
for updating masks often in the decoder.

V. CONCLUSION

Deep networks are used in numerous applications that
require analysis of video data, e.g. smart homes, personal as-
sistance, surveillance etc. Running such networks continuously

2https://youtu.be/bBFTkyckQe8
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(as in surveillance) can be costly in terms of both hardware
requirements and energy consumption. This substantial infer-
ence cost of neural networks on video is a major limiting factor
for their use in mobile devices and always-on scenarios. Our
method dynamically contracts a stack of layers into a single
layer, thereby reducing the complexity and computational cost
of the network in situations where the scene hardly changes
between two frames. Mask updates can be performed at regular
intervals and can also be triggered dynamically following an
input-dependent metric.

Our results on a convolutional autoencoder for denoising
temporal MNIST show that the contracted model is equivalent
to a first-order Taylor expansion with updating reference point.
Approximation of the network via masking and contraction, re-
sults in a condensed network that requires fewer computations
during inference. The proposed method may thus be beneficial
for reducing the run-time cost of deep neural networks on
sequential data like surveillance and highway-driving.

Future work includes extending the method to other archi-
tectures and datasets, exploring different mask update predic-
tors, and quantifying the computational cost of the network
contraction.
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