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Abstract—The low-rank approximation problem has recently
attracted wide concern due to its excellent performance in real-
world applications such as image restoration, traffic monitoring,
and face recognition. Compared with the classic nuclear norm,
the Schatten-p norm is stated to be a closer approximation
to restrain the singular values for practical applications in
the real world. However, Schatten-p norm minimization is a
challenging non-convex, non-smooth, and non-Lipschitz problem.
In this paper, inspired by the reweighted `1 norm for compres-
sive sensing, the generalized iterative reweighted nuclear norm
(GIRNN) algorithm is proposed to approximate Schatten-p norm
minimization. By involving the proposed algorithms, the problem
becomes more tractable and the closed solutions are derived from
the iteratively reweighted subproblems. Numerical experiments
for the practical matrix completion (MC) problem and robust
principal component analysis (RPCA) problem are illustrated to
validate the superior performance of both algorithms over some
common state-of-the-art methods.

Index Terms—Low-rank approximation problem, matrix com-
pletion (MC), robust principal component analysis (RPCA),
generalized iterative reweighted nuclear norm (GIRNN)

I. INTRODUCTION

In recent years, low-rank approximation [1]–[3] has been
widely used in real-world applications. For example, the image
of a natural scene can be considered as a low-rank matrix, and
we can exploit the low-rank property for image restoration
[1]–[3]. In additional, clusters of human facial images can be
used to reconstruct and classify numerical face datasets for
face recognition [4], [5]. Also, the video frames captured by a
surveillance camera are obviously low rank, so the foreground
(e.g., moving object) can be detected from the background
environment [6]. The famous Netflix collaborative filtering
dataset, which contains over 100 million ratings on more than
10,000 movies, is believed to be low rank due to the fact that
most customers’ ratings in this big dataset are affected by a
few common factors [7].

The low-rank approximation problem can be relaxed to the
sparse recovery problem of singular values. However, it is
difficult to solve the low-rank approximation problem directly
since the rank function minimization is NP hard. Usually, we
relax the rank minimization function to a convex problem [4],
[8]. But the Frobenius norm needs to be restrained under the
low-rank matrix subspace. In consideration of the shortcoming
of the nuclear norm, a weighted nuclear norm minimization

(WNNM) algorithm was proposed to approximate the rank
function, with excellent performance on image denoising [1].
However, low-rank approximation for real natural scenes is
a little different from the sparse recovery problem. An aug-
mented Lagrange multiplier (ALM) method is proposed with
the Newton method to search for the optimal solution [14].
However, the method is time-consuming.

Inspired by the iteratively reweighted `1 norm scheme, in
this paper, we propose an iteratively reweighted algorithm, the
generalized iterative reweighted nuclear norm (GIRNN). By
strict formulations and using the well-known von Neumann’s
trace inequality, we relax the proposed weighted low-rank
approximation problem of the observed matrix to the weighted
sparse recovery problem of the singular values. Then the
closed solutions of the iterative algorithms are given with
careful derivations. Finally, we apply the proposed methods
to the matrix completion (MC) problem and robust principal
component analysis (RPCA) with real world datasets to val-
idate their outperforming performance compared with some
state-of-the-art algorithms.

II. PROBLEM FORMULATION AND PRELIMINARY WORKS

As introduced in Section I, the low-rank approximation
problem aims to recover a low-rank matrix from the observed
dataset. It is first formulated with the rank function, that is,

min
X

rank (X)

s.t. ‖Y −X‖2F < δ,
(1)

where rank(·) is the rank function, ‖·‖F is the Frobineus nor-
m, δ is the bound of Gaussian noise power, and X,Y ∈ Rm×n
are the low-rank matrix and observed matrix, respectively. The
rank function is a nonconvex problem, and the optimization
problem in (1) is an NP-hard problem. Most previous studies
relaxed the rank operation to the nuclear norm, which is a
convex function that restricts the low rank of the matrix. Then
the nuclear norm minimization (NNM) problem is formulated
as

min
X
‖X‖∗

s.t. ‖Y −X‖2F < δ,
(2)
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where ‖ · ‖∗ is the nuclear norm. The NNM problem can be
rewritten as the unconstraint optimization problem, that is,

min
X

λ‖X‖∗ +
1

2
‖Y −X‖2F , (3)

where λ is a positive user parameter. The problem in (3)
is easy to solve by SVT [8] with the global solution. For
another perspective, the nuclear norm is actually the `1 norm
of the singular values, i.e., ‖X‖∗=‖σ (X)‖1, where σ (X) is
the singular value vector of X, and ‖·‖1 is the `1 norm. Viewed
this way, the low-rank minimization problem is the sparse
recovery problem for the singular values. For natural images,
the large singular values stay in the dominant position and
need to be protected because the noise cannot affect the large
singular values easily [1]. Also the `1 norm cannot guarantee
the sparse solution perfectly when the entries are very different
from each other. Therefore, it is necessary to approximate the
low-rank objective function in another precise way.

III. REWEIGHTED LOW-RANK SCHEME

Since the low-rank approximation of a matrix is equal to
the sparse recovery of its singular values, our goal of low-rank
approximation can be reformulated to finding the true sparse
solution of the singular values. In some previous studies, the
reweighted norm is proposed to recover the real sparsity of
vector [11]. However, the above reweighted method cannot be
exploited directly for low-rank approximation. First, in [11],
the weighted `1 norm minimization problem is formulated as

min
x

λ
l∑
i=1

wixi +
1

2
‖y − x‖22 , (4)

where x,y ∈ Rl and wi is the weight of the ith entry
of x. Hence similar to (4), the reweighted nuclear norm
minimization problem can be cast as

min
X

λ

min{m,n}∑
i=1

wiσi (X) +
1

2
‖Y −X‖2F . (5)

where note that the singular values are in a non-increasing
order, i.e., σ1 (X) ≥ σ2 (X) ≥ ... ≥ σmin {m,n} (X). And we
apply this order notation for all the following denotations of
singular values. For the weighted nuclear norm problem in (5),
we can get the closed form solution according to the weighted
singular value thresholding [16], [17].

X = USλw (ΣY)VT , (6)

It is critical to emphasize again that the weights should
be in a non-descending order to make the solution feasible.
Therefore, the weighted nuclear norm is able to reconstruct
the real rank of the matrix, i.e., the `0 norm of the singular
value vector, with the weights wi = c(σi (X) + ε)

−1
, where

c is a positive constant, and ε is a sufficiently small positive
number, such as 10−16, to avoid dividing by zero when the
corresponding singular value is zero. By introducing the above
weight, an iterative reweighted method can be exploited to
solve the problem. When the solution reaches convergence,

the objective function approaches the `0 norm of the singular
value vector, i.e., the rank of the matrix. This method is widely
known as the weighted nuclear norm minimization (WNNM)
method [2]. Inspired by the weighted `1 norm for compressive
sensing, we propose a generalized iterative reweighted nuclear
norm (GIRNN) method:

X(k) = USλw(k−1) (ΣY)VT , (7)

w
(k)
i = c

(
σi

(
X(k)

)
+ ε
)p−1

, (8)

where 0 ≤ p < 1, the superscript (k) denotes the kth
iteration, and k ≥ 1. The initial value of weights can be
assigned by the singular values of observed matrix Y, i.e.,
w

(0)
i = c(σi (Y) + ε)

p−1. When p = 0, the weight is
degenerated as that of the WNNM. The updated rule of the
GIRNN method can be solved by alternatively optimizing the
optimal X and updating the weight until the convergence.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the effectiveness of our pro-
posed GIRNN algorithm for solving low-rank approximation
problems, like the matrix completion (MC) problem and
robust principal component analysis (RPCA) problem. We
also compare our proposed algorithm with several state-of-
the-art methods, each of which represents a kind of low-rank
approximation problem.

A. Matrix Completion (MC) Problem

The MC problem seeks to recover the low-rank matrix from
a corrupted signal. The MC problem of the proposed GIRNN
model can be formulated as

min
X,S

λ
min{m,n}∑

i=1

wiσi (X)

s.t. PΩ (Y) = PΩ (X)

(9)

where Ω is a binary support indicator matrix of the same
size as Y, and zeros in Ω indicate missing entries in the
observation matrix. PΩ (Y) = Ω � Y is the element-wise
matrix multiplication (Hardamard product) between the sup-
port matrix Ω and the variable Y. By introducing an auxiliary
variable E, (9) can be recast as

min
X,S

λ
min{m,n}∑

i=1

wiσi (X)

s.t. Y = X + E,
PΩ (E) = 0

(10)

Equation (10) can be efficiently solved by the alternating
direction method of multipliers (ADMM) to alternatively op-
timize the low-rank matrix X and error matrix E as

min
X

λ

min{m,n}∑
i=1

wiσi (X) +
µ

2

∥∥∥∥Y −X−E +
Y1

µ

∥∥∥∥2
F

, (11)

min
E

µ
2

∥∥∥Y −X−E + Y1

µ

∥∥∥2
F

s.t. PΩ (E) = 0,
(12)
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TABLE I
RUNNING TIMES OF THE WNNM, SQN, PSSV, AND THE PROPOSED

GIRNN METHOD FOR FIG. 1.

Method WNNM SQN PSSV GIRNN

Time (s) 18.58 28.35 12.73 7.73

where Y1 is the Lagrangian multiplier. Equation (11) is easy
to solve via the GIRNN algorithm and the closed form solution
of (12) is found by its subgradient.

We test the image inpainting problem on a real world
picture, which is a classic MC problem. We compare our
proposed method, the GIRNN algorithm, with the WNNM
method [1], partial sum singular value (PSSV) method [21],
and the Schatten-q quasi norm (SQN) method [14]. All of the
above methods are solved via the ADMM algorithms, and we
pre-set the same values of the parameters r and λ =

√
2mn

for all the methods, where r is estimated via the method in
[2]. The cross validation set is one figure, and we use the same
value for all the testing images.

The inpainting results of the above methods on the ‘sunset’
image with 80% random mask are presented in Fig. 1. It can
be seen that the proposed GIRNN algorithm has the highest
average PSNRs of the presented state-of-the-art methods. The
enlarged details show that the proposed algorithms can recover
the sunset more clearly and precisely than others. In addition,
among all the above methods, the GIRNN method is the most
efficient one as shown in Table I and the caption of Fig. 1. All
the Matlab programs were performed on a laptop with Intel
i7-6820 HQ CPU and its core frequency is 2.6 GHz. All the
algorithms stop when the residual errors are less than 10−3.
For the matrix completion problem, the main computational
costs of WNNM, PSSV, GIRNN algorithms are the singular
value decomposition (SVD) for the large-dimension matrix
in every iteration. The efficiency of the SQN algorithm is
restricted not only by the SVD but also by the Newton’s
method. Therefore, the computational complexities of all the
above methods, except for the SQN algorithm, are similar for
each iteration.

The values of p in the updated rules are critical to the
final performance. The WNNM can be seen as the special
case of the proposed GIRNN method with p equal to 0. But
the WNNM method is restricted by the lost observations and
can hardly recover the image in a high quality. In Fig. 2, we
plot the average PSNRs of the proposed GIRNN algorithm for
seven figures versus different values of p under 85% random
missing pixels. Not surprisingly, the recovered PSNRs are
lower when p is greater than zero and less than 0.5. And the
best PSNRs are always located around the range from 0.7 to
0.9, which matches the analysis in [22] about natural images.

Fig. 2. Average PSNRs of the proposed GIRNN algorithm for eight figures
versus different value of p under 85% random missing pixels.

B. Robust Principal Component Analysis (RPCA) Problem

Consider the following optimization models

min
X,S

λ
min{m,n}∑

i=1

wiσi (X) + ‖S‖pp
s.t. Y = X + S

(13)

for the GIRNN algorithm, where ‖S‖p = (
∑
|Sij |p)

1
p is the

`p norm. The penalty terms of sparsity are restricted by the
`p norm. In order to solve the problems in (13) efficiently,
we use the ADMM to alternatively optimize the low-rank X
and sparse S. By tackling the low-rank matrix, it is easy to
update X via the GIRNN method. We find that updating X
just once in the inner loop is sufficient to generate an accurate
solution for all the experiments. This approach, called the
inexact GIRNN method, can reduce the computational burden.
Then, to update the sparse term S, it is optimized by solving
the following problem:

min
X,S
‖S‖pp +

µ

2

∥∥∥∥Y −X− S +
Y2

µ

∥∥∥∥2
F

, (14)

where Y2 is the Lagrangian multipliers. The lp norm min-
imization problem in (14) can be iteratively solved by the
generalized shrinkage-thresholding (GST) operator under 0 ≤
p < 1 [23]. In numerical experiments below, the GST operator
is demonstrated to be highly efficient and accurate.

1) Text Removal
We compare the proposed methods with the other RPCA

or equivalent models, including the traditional RPCA model
[4] (nuclear norm & `1 norm), WNNM model [1] (weighted
nuclear norm & `1 norm), LpSq model [14] (Schatten q-norm
& `p norm), PSSV model [21] (truncated nuclear norm & `1
norm), and the greedy go decomposition (GreGoDec) model
[6] (exact rank and cardinality constraint).

Next we apply the above methods on the real natural image
in Fig. 3 to further validate the effectiveness of the proposed
methods. The rank is set to 60 for all the methods and λ is the
same as above. Limited by the pages, we omit the text image
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Fig. 1. Image inpainting results of different methods with 80% random missing pixels. (a) Ground truth. (b) Corrupted image. (c) WNNM. PSNR = 27.96
dB. Time = 18.58 s. (d) SQN. PSNR = 28.76 dB. Time = 28.35 s. (e) PSSV. PSNR = 27.48 dB. Time = 12.73 s. (f) GIRNN. PSNR = 29.24 dB. Time =
7.73 s.

removed by the above methods. All the methods can recover
the image without visible text, except for the GreGoDec
algorithm. Even though the proposed methods cannot recover
the ground truth as clearly as the toy image, it can be seen
that the proposed methods still outperform the other state-of-
the-art methods. For example, one can see a blurry bird on the
top of the tree in Fig. 3 (h). The other methods miss the bird
in the recovered images.

2)Background Extraction and Pedestrian Detection
The background extraction problem is a classic RPCA

problem, because the background is almost invariant for all
the frames of a surveillance video and the pedestrian moves
in each frame, which can be explained as the low-rank
background and a sparse moving pedestrian. In this subsection,
we test the proposed methods in Fig. 4 on the popular
surveillance video: Bootstrap dataset (http://perception.i2r. a-
star.edu.sg/bk model/bk index.html). We select 200 frames
for the experiment and set the rank as 3 for all the methods. As
a result, all the methods can detect the pedestrians correctly.
However, the LpSq, GreGoDec, RPCA, and PSSV methods
detect the reflected light on the floor as the sparse part (shown
in the red rectangles). Also, the backgrounds in the yellow
rectangles are falsely extracted from the pedestrians. It is clear
that the decomposition results of the proposed methods are
better than those of the other methods.

V. CONCLUSION

In this paper, the generalized iterative reweighted nuclear
norm (GIRNN) algorithm was proposed to approximate the
Schatten-p norm for low-rank approximation in some practi-
cal applications. We formulated the closed-form solution for
the iterative reweighted algorithm. The proposed algorithm
outperformed other selected state-of-the-art algorithms in the
practical applications such as image inpainting, pedestrian

detection, and text removal. In the future, we will work on
the fast implementation of the iterative reweighted algorithm
to make them more efficient while remaining their current
excellent performance.
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