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Abstract—An off-the-shelf drone for indoor operation would
come with a variety of different sensors that are used concur-
rently to avoid collision with, e.g., walls, but these sensors are
typically uni-directional and offers limited spatial awareness. In
this paper, we propose a model-based technique for distance
estimation using sound and its reflections. More specifically, the
technique is estimating Time-of-Arrivals (TOAs) of the reflected
sound that could infer knowledge about room geometry and help
in the design of sound-based collision avoidance. Our proposed
solution is thus based on probing a known sound into an
environment and then estimating the TOAs of reflected sounds
recorded by a single microphone. The simulated results show that
our approach to estimating TOAs for reflector position estimation
works up to a distance of at least 2 meters even with significant
additive noise, e.g., drone ego noise.

Index Terms—robotics, room geometry estimation, acoustic
impulse response

I. INTRODUCTION

One of the key issues when it comes to indoor operation of
Unmanned Aerial Vehicles (UAVs), also known as drones, is
the estimation of the physical boundaries’ (e.g., walls) position
in order to avoid collision. A common approach to estimating
such positions is to use active sensors such as ultrasonic or in-
frared. Alternatively, camera-based technology combined with
advanced computer vision techniques such as Simultaneous
Localization And Mapping (SLAM) can be used for landmark
or wall position estimation [1]. These techniques, however,
have certain limitations. For instance, computer vision based
techniques are susceptible to changing lightening conditions
and does not work well under low-light conditions. Also,
SLAM-based algorithms tends to have difficulty tracking a
plain, white surface or landmarks making it harder for SLAM
algorithm to estimate a wall position [2]. Moreover, such
sensors have a limited field-of-view, so multiple sensors are
required to cover all directions around the drone to avoid
collisions with walls or other acoustic reflectors, e.g., glass
windows. However, localization of a reflector position can
be achieved using sound, by estimating the Time-of-Arrivals
(TOAs) of acoustic reflections. This is a known estimation
problem within the area of acoustic signal processing, which
can potentially be implemented on moving robotic platforms
or drones. TOAs estimation can thus be important in, e.g.,
robot and drone (UAV) applications, where it can facilitate
acoustic SLAM (ASLAM) [3] and room geometry estimation

(RGE) [4]. Moreover, if knowledge of TOAs is obtained, then
distance estimation to acoustic reflectors is a straight-forward
process given that the speed of sound is known.

In acoustic signal processing, the sound recorded by a
microphone consists of a direct path component, first-order
early reflections and later reflectins. This acoustic signal
propagation from a loudspeaker to a microphone in a room
is described by the room impulse response (RIR). The RIR
contains information about the TOAs of acoustic reflections,
which can be extracted. In the following, we review recent
examples of methods utilizing this approach. For instance, in
[5], a cell phone is used to probe the walls at different locations
of the room with a chirp signal. The sound signals are reflected
by the wall which are then correlated against the source signal
to find TOAs which in turn helps determining the distances of
the reflectors. The distance estimation was done by success-
fully extracting TOAs from a RIR. This knowledge helps the
authors generate a map of the environment. Similarly, in [6],
a single collocated microphone and loudspeaker arrangement
was placed on a moving robotic platform to estimate distance
between the robot and the reflecting surface from TOAs
obtained from RIR. The authors in [6] proposes two estimators
to calculate distance from TOAs; one involving multilateration
techniques that uses the measured TOA values to construct a
tangent line of the circle that indicates the position of the
wall while the other approach is a Bayesian approach that
gives a general solution to the RGE. Common for these state-
of-the-art methods is that they require information about the
TOA’s of the early reflections. Typically, it is assumed that
these estimates can be simply obtained through peak picking
on an estimated RIR [7]- [10]. This approach is problematic in
practice, however, because the individual peaks corresponding
to the true TOA’s can be small due to dispersion, diffusion,
etc., and additive noise (e.g., drone ego noise) can introduce
spurious peaks in the estimated RIR [11]. Moreover, the
accuracy of the TOA estimates will be limited by the sampling
rate [12], unless heuristic interpolation methods are used.

Since a moving drone is always accompanied by ego noise
due to the motion of the rotors, we therefore propose and
alternative approach to TOA estimation. This is a model-
based approach for estimating TOA’s based on a model for
the early reflections. This enable us to derive a statistically
optimal estimator for obtaining TOA estimates directly from
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observed microphone recordings instead of the traditional peak
picking on an estimated RIR. This is inspired by the work in
[13] on DOA estimation in reverberant environments. When
it is desired to estimated multiple TOA’s, e.g., to estimate the
distance to multiple reflectors, our proposed estimator becomes
computational complex due to its multidimensional nature. To
tackle this, we propose an iterative estimation procedure based
on the RELAX procedure [14].

The remaining part of this paper is organized as follows:
Section II formulates the signal model and the problem.
Section III describe the proposed TOA estimator based on the
model, Section IV describe an iterative procedure for handling
multiple reflections, while Section V evaluates the perfor-
mance and robustness of the proposed solution. Furthermore,
Section VI contains our conclusions and future work.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider the setup where a single loudspeaker is situ-
ated at rs , [xs, ys, zs] that emits a known signal s(n)
which is recorded by a microphone placed at location rm ,
[xm, ym, zm]. The microphone and sound source are assumed
to be collocated and placed inside a room. The observed signal
recorded by microphone y(n) is then modeled as follows:

y(n) = s(n) ∗ h(n) + v(n) = x(n) + v(n) (1)

where h(n) is the impulse response of the room measured
from rs to rm, x(n) = s(n) ∗ h(n) is the sound source signal
including reverberation, v(n) is additive background noise,
e.g., ego noise, and ∗ represents the convolution operator. If
we decompose (1) as a sum of its direct-path component and
its first few reflections, then the observed signal model can be
written as:

y(n) =
R∑
q=1

gqs(n− τq) + v′(n) (2)

where gq is the attenuation of the qth order sound reflection
from the source to the microphone, and v′(n) is a combined
noise term constituted by the late reverberation (i.e., the q > R
components) and the additive background noise. This can be
further decomposed as

y(n) = xD(n) + xR(n) + v′(n), (3)

where xD(n) = g1s(n−τ1) is the direct path component, and
xR(n) =

∑R
q=2 gqs(n−τq) is the early reflection components.

The signal decomposition, can also be expressed using simple
first order FIR filters, hq , for q = 1, . . . , R, as

y(n) =
R∑
q=1

hq ∗ s(n) + v′(n), (4)

The transfer function of these filters are given by

Hq(z) = gqz
−τq , (5)

for q = 1, . . . , R. In many applications, the microphone and
the sound source will be placed in fixed positions. In such

cases the transfer function of h1 can be either measured
offline or computed analytically using the geometry, i.e., by
computing g1 and τ1. In such cases, we can thus work with a
modified signal model:

y(n) =
R∑
q=2

hq ∗ s(n) + v′(n), (6)

where y(n) = y(n) − xD(n), and only the gains and delays
of the early reflections are unknown. The estimation problem
at hand, is thus to estimate these unknown quantities, τq and
gq for q = 2, . . . , R, which are key components in acoustic
SLAM and room geometry estimation methods.

III. NON-LINEAR LEAST SQUARE (NLS) ESTIMATOR

If we take N samples of the observed signals y(n) =[
y(n) y(n+ 1) · · · y(n+N − 1)

]T
and assume that we

know s(n) we can formulate a nonlinear least squares (NLS)
estimator, which is the maximum likelihood estimator when
the noise is white Gaussian. Mathematically, this can be
formulated as

{ĝ, τ̂} = argmin
g,τ

‖y(n)− x(n)‖2 (7)

= argmin
g,τ

∥∥∥∥∥y(n)−
R∑
q=2

hq ∗ s(n)

∥∥∥∥∥
2

, (8)

where

τ̂ =
[
τ̂2 τ̂3 · · · τ̂

]T
, (9)

ĝ =
[
ĝ2 ĝ3 · · · ĝR

]T
. (10)

and y(n), xR(n) and s(n) are defined similarly to y(n).
Moreover, the notation a ∗ b denotes the convolution of each
entry in the vector b with the scalar a, while ĉ denotes an
estimate of the parameter c. Using Parseval’s theorem, we can
transfer (7) to the frequency domain, which yields

{ĝ, τ̂} = argmin
g,τ

‖Y −X‖2 (11)

= argmin
g,τ

∥∥∥∥∥Y −
R∑
q=2

Hq � S

∥∥∥∥∥
2

, (12)

where Y and X are the length K DFT vectors of y(n) and
x(n), respectively. Moreover, Hq = gqZ(τq) and

Z(τ) =
[
1 e−jτ2π

1
K · · · e−jτ2π

K−1
K

]T
. (13)

That is, when the noise is white Gaussian, the maximum
likelihood estimator can also be written as

{ĝ, τ̂} = argmin
g,τ

∥∥∥∥∥Y −
R∑
q=2

gqZ(τq)� S)

∥∥∥∥∥
2

(14)

= argmin
g,τ

J(g, τ ) (15)
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IV. RELAX NON-LINEAR LEAST SQUARE (RNLS)
ESTIMATOR

The estimator in (14) can be shown to be statistically
optimal when estimating g and τ in the presence of additive
white Gaussian noise. However, it is computationally expen-
sive when estimating multiple TOA’s as it will require a multi-
dimensional search for different values of τ and g, limiting its
use in real-time, practical applications. Therefore, a RELAX
procedure, originally proposed by [14] and later used in [13],
will be adopted to iteratively calculate the value of τ and g.
In order to implement the RELAX method, we will introduce
a modified observed signal:

Yr = Y −
R∑

q=2,q 6=r

gqZ(τq)� S (16)

where Yr is a modified observation vector containing only the
r’th early reflection and additive noise.With this we can then
estimate the r’th gain and TOA as

{ĝr, τ̂r} = argmin
g,τ

‖Yr − grZ(τr)� S)‖2 (17)

We can then solve for the linear gain parameter gr by taking
the derivative of the cost function and setting it equal to zero,
yielding

ĝr =
YH
r Z(τr) + Z

H
(τr)Yr

2Z
H
(τr)Z(τr)

(18)

where Z(τr) = Z(τr) � S. This can be inserted back into
estimator in (17) to obtain the τr as

τ̂r = argmin
τ

∥∥∥∥∥Yr −
YH
r Z(τ) + Z

H
(τ)Yr

2Z
H
(τ)Z(τ)

Z(τ)

∥∥∥∥∥
2

(19)

= argmax
τ

R
{
YH
r Z(τ)

}
. (20)

That is, by solving the optimization problem in (20),
we can calculate τ̂r and its corresponding ĝr of the r’th
reflection. This leads to the iterative RELAX-based procedure:

• Step 1: Assume that R = 2, i.e., that we have one
first-order reflection of the sound. Estimate g2 and τ2
using (18) and (19) from Y2 = Y.

• Step 2: Assume R = 3. Estimate g3 and τ3 using (18)
and (19) from Y3 computed with the current estimates of
τ2 and g2. Then re-estimate g2 and τ2 from Y2 computed
using the newly estimated values of g3 and τ3. Continue
Step 2 until it converges (e.g., ‖J i − J i+1‖2 < ε where
i is the iteration index and ε is a threshold value.

• Step 3: Assume R = 4. Estimate g4 and τ4 using (18)
and (19) from Y4 computed with the current paramater
estimates of the other reflections. Then re-estimate
g2 and τ2 from Y3 computed using newly estimated
reflection parameters. Then re-estimate g3 and τ3 from
Y3 computed using the newly estimated reflection

parameters. Continue until convergence.

• Remaining Steps: Continue until R is equal to the desired
number of early reflections.

V. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we will evaluate our proposed solution in a
simulated room environment obtained with the Multichannel
Room Acoustic Simulator (MCRoomSim) [15]. The perfor-
mance was measured in terms of root mean squared error
(RSME) with respect to the distance from the microphone and
loudspeaker arrangement to the acoustic reflector, but also with
respect to the noise level. Two experiments were conducted;
one involving a random noise signal that is transmitted by the
loudspeaker for different drone positions while the background
noise is white Gaussian; and the other involved using more
realistic drone ego noise (e.g., rotor noise) as the background
noise. The drone sound was obtained from the DREGON
dataset [16].

A room with a dimension of 10 × 10 × 6 m was consid-
ered. To test the validity of our proposed solution, we use
a collocated microphone-loudspeaker arrangement where the
loudspeaker generate a known sound signal and a microphone
is placed at a fixed distance of 0.1m directly underneath the
loudspeaker. The microphone-loudspeaker arrangement was
placed parallel to the x-axis of the room and was located at
a position rs = [0.1, 5, 3] m while the microphone position
is rm = [0.1, 5, 2.9] m. The position of the source and the
microphone arrangement in relation to the wall is then varied
from 0.1 m to 2 m in 0.2 m steps. Moreover, the sampling
frequency was set to 44.1 kHz and the signal length was set
to 2000 samples. As discussed in the previous section, we
generate a known sound signal. For this particular experiment,
we use a random noise signal as our sound source constituted
by 2000 samples drawn from a Gaussian distribution. Further-
more, the speed of sound was fixed at 343 m/s. Then, additive
white Gaussian noise was introduced at varying SNR levels
ranging from −40 dB to 40 dB in 5dB steps. Similarly, the
two evaluations (i.e., versus distance and SNR) was carried
out with realistic drone ego noise as well. The ε value was
set to 1 × 10−5, which we found through experiments to be
suitable for accurate estimation of the gains and TOAs with the
RELAX procedure. Finally, 50 Monte Carlo simulation were
conducted for each of the settings and the average results for
each setting are shown.

A. Algorithm testing with additive white Gaussian noise as
the sensor noise

In the first experiment, we tested the performance of our
proposed method with white Gaussian background noise. As
seen in Fig.1(a), the proposed method give low estimation
errors for SNRs above −15 dB for distances between 0.1 m
and 1.0 m, whereas for the higher distances, this is the case for
SNRs above -10 dB. Moreover, as seen in 1(b), the proposed
method could estimate reflector’s distance up to 2m when the
background noise level is above -20 dB. Furthermore, the
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Fig. 1: Performance metrics of proposed method using a Gaussian noise as the background noise. RMSE of TOA were measured
against varying (a) SNR and (b) distance of collocated microphone-loudspeaker from one of the wall
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Fig. 2: Performance metrics of propose method using a drone sound as the background noise for a large room. RMSE of TOA
were measured against varying (a) SNR and (b) distance of collocated microphone-loudspeaker from one of the wall

algorithm was tested on a standard desktop computer using
MATLAB as the simulation environment running on Microsoft
Windows 10 operating system with a an Intel Core i7 CPU
with 3.40 GHz processing speed and 16 GB of Random Access
Memory (RAM). The average time for the algorithm for
estimating first-order early reflection is around 1.71 seconds
which we believe would be suitable for any drone application.
The average computation time could be further reduced when
estimating the distances over time and reducing the grid size
τ in (19). This is possible if we estimate distances at time
instances zero and then at time instance one, the algorithm
could use previous estimates of distance to search for TOAs
using a reduced grid size.

B. Algorithm testing with drone noise as a background noise

In this experiment, we tested the performance of the pro-
posed method in the presence of drone ego noise as the back-

ground noise. As seen in 2(b), the performance is comparable
to 1(b). Moreover, it show the TOAs estimator starts to break
down at -10 dB when increasing the distance above 1 m. These
observations are expected, because the local SNR decreases as
the distance of the proposed microphone- loudspeaker setup
is increased against the wall. Moreover, similar behaviour will
be expected across the remaining SNR values if we evaluate
the estimator beyond 2m.

C. Detecting multiple peaks using RELAX procedure

In a real-world situation, drones could be placed in near
multiple acoustic reflectors, in which case we want to estimate
multiple TOAs. This can be done with the RELAX procedure,
we can estimate all the reflections associated with the reflect-
ing surfaces. This was evaluated with a room of dimensions
6 × 6 × 2.4 m that was simulated in MCRoomSim and the
collocated loudspeaker-microphone pair was placed at a loca-
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Fig. 3: Detection of multiple reflections using the proposed
iterative procedure.

tion of rs = [0.1, 1, 3]m and rm = [0.1, 1, 2.9]m, respectively.
As seen in Fig. 3, multiple reflections are recorded by the
microphone, each associated with a wall inside a room. The
estimated TOAs are close to strongest of the true TOAs of the
walls.

VI. DISCUSSION AND FUTURE WORK

In this paper, we proposed an active approach to estimate
TOAs using a collocated loudspeaker-microphone arrange-
ment. Our iterative and model-based approach to TOA esti-
mation could, e.g, be implemented on a UAV as part of a
collision-avoidance system. The proposed method, is based
on a model of early reflections leading to a statistically op-
timal NLS estimator. To handle the computationally complex
problem of estimating multiple TOAs of multiple reflectors
in this way, also proposed and iterative implementation of
the estimator. In the experiments, we evaluated the method in
different noisy scenarios, showing that our proposed method
is robust and accurate up to at least a distance of 2 m with
negative SNRs, both with additive white Gaussian noise and
more realistic ego noise from the rotors of a drone. This
indicate that the propose probing approach would not be too
intrusive, as the TOAs can be estimated even when the ego
noise is louder than the probing sound. In the future iteration
of this research, we will test the performance of our proposed
method on an actual UAV. Moreover, we aim at extending
the proposed method to use an array of microphones so we
can estimate both the distance and the direction of the early
reflections.
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