
Graph Neural Networks

Alejandro Ribeiro
Electrical and Systems Engineering, University of Pennsylvania

aribeiro@seas.upenn.edu

Thanks: Joan Bruna, Luiz Chamon, Fernando Gama, Gabriel Egan, Daniel Lee,
Antonio Garcia Marques, Mark Eisen, Elvin Isufi, Arbaaz Khan, Vijay Kumar,
Geert Leus, George Pappas, Jimmy Paulos, Luana Ruiz, Santiago Segarra,
Kate Tolstaya, Clark Zhang

Support: ARO W911NF1710438, Intel ISTC-WAS,
NSF CCF 1717120, ARL DCIST CRA W911NF-17-2-0181

September 6, 2019

A. Ribeiro Graph Neural Networks 1/50

mailto:aribeiro@seas.upenn.edu

Machine Learning for Graph Signals

Machine Learning for Graph Signals

Authorship Attribution

Learning Decentralized Controllers in Distributed Systems

Learning Optimal Resource Allocations in Wireless Communications Networks

Invariance and Stability Properties of Graph Neural Networks

Concluding Remarks

A. Ribeiro Graph Neural Networks 2/50

Machine Learning on Graphs

I Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

Segarra et al ’16, doi.org/10.1353/shq.2016.0024

Recommendation Systems

Ruiz et al ’18, arxiv.org/abs/1903.12575

A. Ribeiro Graph Neural Networks 3/50

doi.org/10.1353/shq.2016.0024
arxiv.org/abs/1903.12575

Machine Learning on Graphs

I Graphs are generic models of signal structure that can help to learn in several practical problems

Decentralized Control of Autonomous Systems

Tolstaya et al ’19, arxiv.org/abs/1903.10527

Wireless Networks (Eisen et al ’19)

Eisen-Ribeiro ’19, arxiv.org/abs/1909.01865

A. Ribeiro Graph Neural Networks 3/50

arxiv.org/abs/1903.10527
arxiv.org/abs/1909.01865

Machine Learning on Graphs

I There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this

A. Ribeiro Graph Neural Networks 4/50

Machine Learning on Graphs

I There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this

A. Ribeiro Graph Neural Networks 4/50

Machine Learning on Graphs

I There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this

I Generalize convolutions to graphs and compose graph filters with pointwise nonlinearities

A. Ribeiro Graph Neural Networks 4/50

Convolutions in Time and Space

I We can describe discrete time and space using graphs that support time or space signals

Description of time with a line graph Description of images (space) with a grid graph

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

I Either convolution is a polynomial on the respective adjacency matrix ⇒ z =
∞∑
k=0

hkSk x

A. Ribeiro Graph Neural Networks 5/50

Convolutions on graphs

I In general, we can describe signals with arbitrary structure with a suitable graph

⇒ With edges that represent an expectation of similarity between components of the signal

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

x1

2

x2

3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

I Again, convolution is a polynomial on the respective adjacency matrix ⇒ z =
∞∑
k=0

hkSk x

A. Ribeiro Graph Neural Networks 6/50

Convolutional Neural Networks (CNNs)

I Compose a cascade of layers

I Themselves compositions of chosen
convolutional filters with pointwise nonlinearities

I Output is a function of filter tensor H

I A CNN is a minor variation of a convolutional
filter. Just add nonlinearity and stir

Layer 1

Layer 2

Layer 3

x

z1 =
∞∑
k=0

h1kSk x x1 = σ
[

z1

]z1

z1 =
∞∑
k=0

h2kSk x1 x2 = σ
[

z2

]z2

z1 =
∞∑
k=0

h3kSk x2 x3 = σ
[

z3

]z3

x1
x1

x2
x2

x3 = Φ(x; H)

, ,

A. Ribeiro Graph Neural Networks 7/50

Graph Neural Networks (GNNs)

I Compose a cascade of layers

I Themselves compositions of chosen
graph filters with pointwise nonlinearities

I Output is a function of filter tensor H

I A GNN is a minor variation of a graph
filter. Just add nonlinearity and stir

Layer 1

Layer 2

Layer 3

x

z1 =
∞∑
k=0

h1kSk x x1 = σ
[

z1

]z1

z1 =
∞∑
k=0

h2kSk x1 x2 = σ
[

z2

]z2

z1 =
∞∑
k=0

h3kSk x2 x3 = σ
[

z3

]z3

x1
x1

x2
x2

x3 = Φ(x; H, S)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

A. Ribeiro Graph Neural Networks 8/50

arxiv.org/abs/1805.00165

Graph Neural Networks (GNNs)

I It’s the same thing ⇒ We just redefined what it
means to do a convolution

I Output is a function of graph shift operator S

I In practice we use multiple features per layer,
pooling and readout layers

⇒ But just for polishing around the edges

Layer 1

Layer 2

Layer 3

x

z1 =
∞∑
k=0

h1kSk x x1 = σ
[

z1

]z1

z1 =
∞∑
k=0

h2kSk x1 x2 = σ
[

z2

]z2

z1 =
∞∑
k=0

h3kSk x2 x3 = σ
[

z3

]z3

x1
x1

x2
x2

x3 = Φ(x; H, S)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

A. Ribeiro Graph Neural Networks 8/50

arxiv.org/abs/1805.00165

Authorship Attribution

Machine Learning for Graph Signals

Authorship Attribution

Learning Decentralized Controllers in Distributed Systems

Learning Optimal Resource Allocations in Wireless Communications Networks

Invariance and Stability Properties of Graph Neural Networks

Concluding Remarks

A. Ribeiro Graph Neural Networks 9/50

Authorship Attribution with Word Adjacency Networks

I Function words are those that don’t carry meaning

I Their use depends on the language’s grammar

I Different authors use slightly different grammar

I Capture with a word adjacency network (WAN)

⇒ How often pairs of words appear together

Segarra-Eisen-Ribeiro, Authorship Attribution through Function Word Adjacency

Networks, TSP 2015, arxiv.org/abs/1805.00165

a
bit
coupleaboardaboutaboveabsentaccordingaccordinglyacrossafteragainstaheadalbeitallalongalongside

although
amidamidst

among
amongst

anandanother

an
yan

yb
od

y

an
yo

ne

an
yt

hi
ng

ar
ou

nd

asas
id

e

as
tra

dd
le

as
tri

de

ataw
ay

ba
r

ba
rr

in
g

be
ca

us
e

be
fo

re

be
hi

nd

be
lo

w
be

ne
at

h

be
si

de
be

si
de

s
be

tw
ee

n
be

yo
nd

bo
th

bu
t

byca
n

ce
rt

ai
n

ci
rc

a
cl

os
e

co
nc

er
ni

ng
co

ns
eq

ue
nt

ly
co

ns
id

er
in

g
co

ul
d

da
re

de
sp

ite
do

w
n

du
e

du
rin

g
ea

ch
ei

th
er

en
ou

gh
ev

er
y

ev
er

yb
od

y
ev

er
yo

ne
ev

er
yt

hi
ng

ex
ce

pt
ex

cl
ud

in
g

fa
ilin

g
fe

w
fe

w
er

fo
llo

win
g

fo
r

fro
m

giv
en

he
ap

s

he
nc

e

ho
wev

er

ifinsp
ite

vie
w

including

inside

instead

into
it
its
itself
less
like
little
loads
lots
many
may
might
minus
more
most
much
must
near
need
neither nevertheless next no

nobody none nor nothing notwithstanding
of off on once one onto opposite

or other ought
our out outside

over part past

pending

per pertaining

plenty

plus
regarding

respecting

round

save
saving

several

shall
should

sim
ilar

since
so som

e
som

ebody

som
ething

such
than
that
the
them
them

selves
then
thence
therefore
these
they
this
tho
those
though
through
throughout
thru
till
to tow

ard
tow

ards
under

underneath

unless
unlike

until
unto

up
upon

us
used

various

versus

via
wanting

what

whatever

when

whenever

where

whereas

wherever

whether

which

whichever

while
whilst
who
whoever

whom
whomever

whose
will
with
within
without
would
yet

A. Ribeiro Graph Neural Networks 10/50

arxiv.org/abs/1805.00165

Authorship Attribution with Word Adjacency Networks

I Function words are those that don’t carry meaning

I Their use depends on the language’s grammar

I Different authors use slightly different grammar

I Capture with a word adjacency network (WAN)

⇒ How often pairs of words appear together

Segarra-Eisen-Ribeiro, Authorship Attribution through Function Word Adjacency

Networks, TSP 2015, arxiv.org/abs/1805.00165

a

aboard

about
against

all

along
an

and
anotherany

aro
undas

as
id

eat

aw
aybo

thbu
tbyca

nde
sp

ite

do
w

n

ea
ch

ei
th

er

en
ou

gh

fo
r

fr
om

he
nc

e
if

in

in
to

it
lik

e
litt

le

m
an

y

may

might

more

most

much

must

neither

next

no

none

nor

nothing

of

on

once
one

or
other our

out
round shall should

so

som
e

such than that

the them

then

thence

therefore

these

they

this

those
through

to

until
unto

up
upon

us

what

when

where

whether

which

while

will

with

would

yet

A. Ribeiro Graph Neural Networks 10/50

arxiv.org/abs/1805.00165

Henry the VI is a Collaborative Effort by Shakespeare and Marlowe

I Shakespeare’s and Marlowe’s WANs are sufficiently different to ascertain their collaboration on Henry VI

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016, doi.org/10.1353/shq.2016.0024

A. Ribeiro Graph Neural Networks 11/50

doi.org/10.1353/shq.2016.0024

Henry the VI is a Collaborative Effort by Shakespeare and Marlowe

I Shakespeare’s and Marlowe’s WANs are sufficiently different to ascertain their collaboration on Henry VI

a

about

all

along

and

as

bar

bu
t

by

cl
os

ede
sp

ite

do
w

n

ex
ce

pt

fo
r

fr
om

he
ap

s

he
nc

e

in

it

lik
e

m
an

y

may

more

much

neither

no

none

nor

of

on

or

our

out

round
shall

so

such than that the them
selves

then

thence

this

throughout
to

tow
ards

underneath
until

unto

upon

us

while

will

with

a

about

all

along

and

as

bar

bu
t

by

cl
os

ede
sp

ite

do
w

n

ex
ce

pt

fo
r

fr
om

he
ap

s

he
nc

e

in

it

lik
e

m
an

y

may

more

much

neither

no

none

nor

of

on

or

our

out

round
shall

so

such than that the them
selves

then

thence

this

throughout
to

tow
ards

underneath
until

unto

upon

us

while

will

with

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016, doi.org/10.1353/shq.2016.0024

A. Ribeiro Graph Neural Networks 11/50

doi.org/10.1353/shq.2016.0024

Authorship Attribution with a GNN

I When texts are long we can attribute by comparing word networks of different texts

I When texts are short comparing networks is unreliable

⇒ Compare histograms of different texts defined as graph signals over WANs

I Pickup pages (1K words) written by E. Brontë or J. Austen from a pool of 22 contemporaries

Emily
Brönte

Jane
Austen

I Different GNN architectures all achieve good error rates ⇒ ∼ 12% (Brönte) and ∼ 4% (Austen)

Ruiz-Gama-Marques-Ribeiro, Invariance-Preserving Localized Activation Functions for Graph Neural Networks, arxiv.org/abs/1903.12575

A. Ribeiro Graph Neural Networks 12/50

arxiv.org/abs/1903.12575

Learning Decentralized Controllers in Distributed Systems

Machine Learning for Graph Signals

Authorship Attribution

Learning Decentralized Controllers in Distributed Systems

Learning Optimal Resource Allocations in Wireless Communications Networks

Invariance and Stability Properties of Graph Neural Networks

Concluding Remarks

A. Ribeiro Graph Neural Networks 13/50

Decentralized Coordination of a Robot Swarm

I We want the team to coordinate on their individual velocities without colliding with each other

I This is a very easy problem to solve if we allow for centralized coordination ⇒ ui =
∑N

i=1 vi

I But it is very difficult to solve if we do do not allow for centralized coordination ⇒ ui = . . .

Tolstaya-Gama-Paulos-Pappas-Kumar-Ribeiro, Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks, arxiv.org/abs/1909.01865

A. Ribeiro Graph Neural Networks 14/50

arxiv.org/abs/1909.01865

Decentralized Coordination of a Robot Swarm

I Or, the team has to maintain a formation while they fly without colliding and tolerating wind

I This is also an easy to solve problem with centralized coordination and difficult to solve without

Khan-Tolstaya-Kumar-Ribeiro, Graph Policy Gradients for Large Scale Robot Control, arxiv.org/abs/1907.03822

A. Ribeiro Graph Neural Networks 15/50

arxiv.org/abs/1907.03822

Information Structure on Distributed Systems

I The challenge in designing behaviors for distributed systems is the partial information structure

xi(n)

I Node i has access to its own local information at time n ⇒ xi(n)

I

I

I

A. Ribeiro Graph Neural Networks 16/50

Information Structure on Distributed Systems

I The challenge in designing behaviors for distributed systems is the partial information structure

xi(n) xj(n−1) for j ∈ N 1
i

I Node i has access to its own local information at time n ⇒ xi(n)

I And the information of its 1-hop neighbors at time n − 1 ⇒ xj(n−1) for all j ∈ N 1
i

I

I

A. Ribeiro Graph Neural Networks 16/50

Information Structure on Distributed Systems

I The challenge in designing behaviors for distributed systems is the partial information structure

xi(n) xj(n−1) for j ∈ N 1
i xj(n−2) for j ∈ N 2

i

I Node i has access to its own local information at time n ⇒ xi(n)

I And the information of its 1-hop neighbors at time n − 1 ⇒ xj(n−1) for all j ∈ N 1
i

I And the information of its 2-hop neighbors at time n − 2 ⇒ xj(n−2) for all j ∈ N 2
i

I

A. Ribeiro Graph Neural Networks 16/50

Information Structure on Distributed Systems

I The challenge in designing behaviors for distributed systems is the partial information structure

xi(n) xj(n−1) for j ∈ N 1
i xj(n−2) for j ∈ N 2

i xj(n−3) for j ∈ N 3
i

I Node i has access to its own local information at time n ⇒ xi(n)

I And the information of its 1-hop neighbors at time n − 1 ⇒ xj(n−1) for all j ∈ N 1
i

I And the information of its 2-hop neighbors at time n − 2 ⇒ xj(n−2) for all j ∈ N 2
i

I And the information of its 3-hop neighbors at time n − 3 ⇒ xj(n−3) for all j ∈ N 3
i

A. Ribeiro Graph Neural Networks 16/50

Learning to Imitate the Centralized Optimal Policy

I Control actions can only depend on information history ⇒ Hin =
K−1⋃
k=0

{
xj(n−k) : j ∈ N k

i

}
I Optimal controller is famously difficult to find. Even for very simple linear systems

⇒ Witsenhausen, H. “A counterexample in stochastic optimum control” (February 1968)

I When optimal solutions are out of reach we resort to heuristics ⇒ data driven heuristics

A. Ribeiro Graph Neural Networks 17/50

Learning to Imitate the Centralized Optimal Policy

I The centralized optimal control policy π∗(xn) can be computed during training time

I Introduce parametrization and learn decentralized policy that imitates centralized policy

H∗ = argmin
H

Eπ
∗[
L
(
π
(
Hin,H

)
,π∗(xn)

)]
I Need parametrization H adapted to the information structure Hin ⇒ Graph filters and GNNs

A. Ribeiro Graph Neural Networks 18/50

The Aggregation Sequence (Diffusion Sequence)

y0n = xn y1n = Sy0(n−1) y2n = Sy1(n−2) y3n = Sy2(n−3)

I Aggregate information at nodes through successive averaging with graph adjacency S

ykn = Sy(k−1)(n−1) ⇒
[

ykn

]
i

=
[

Syk−1(n−1)

]
i

=
∑

j=1,j∈Nin

[
S
]
ij

[
yk−1n−1

]
j

I Computed with local operations that respect information structure of distributed system

A. Ribeiro Graph Neural Networks 19/50

Permutation Covariance

I GNNs operate on the diffusion sequence ⇒ Which respects the partial information structure Hin

I From the perspective of an individual node, the processing of the aggregation sequence is such that

⇒ If two agents observe the same input

⇒ Their K -hop neighbors observe the same inputs

⇒ And the local neighborhood structures of the graph are the same

I Then the output of the control policy is the same at both nodes. As it should. Or not.

I Aggregation GNN is permutation covariant ⇒ Permute graph and input ≡ permute output

I Permutation covariance is not a choice. It is a necessity for offline training

A. Ribeiro Graph Neural Networks 20/50

Offline Training vs Online Execution

I If we want to train offline and execute online we can’t assume the graph is the same

I Train online on a graph like this

I

I

I

A. Ribeiro Graph Neural Networks 21/50

Offline Training vs Online Execution

I If we want to train offline and execute online we can’t assume the graph is the same

I Train online on a graph like this I And execute offline on a graph like this

I

I

I

A. Ribeiro Graph Neural Networks 21/50

Offline Training vs Online Execution

I If we want to train offline and execute online we can’t assume the graph is the same

I Train online on a graph like this I And execute offline on a graph like this

I GNNs run on the aggregation sequence ⇒ It can be ran independently of graph’s structure.

I Permutation covariance says that if graphs are similar GNN outputs will be similar.

I Thereby producing similar policies and ensuring generalization across different graphs

A. Ribeiro Graph Neural Networks 21/50

Coordinating a Robot Swarm

I The GNN learns to imitate the central policy. Outperforms existing distributed control methods

I It transfers ⇒ All of these different spatial configurations are using the same GNN tensor

A. Ribeiro Graph Neural Networks 22/50

Learning Optimal Resource Allocations in Wireless Communications Networks

Machine Learning for Graph Signals

Authorship Attribution

Learning Decentralized Controllers in Distributed Systems

Learning Optimal Resource Allocations in Wireless Communications Networks

Invariance and Stability Properties of Graph Neural Networks

Concluding Remarks

A. Ribeiro Graph Neural Networks 23/50

Wireless Interference Channel

I Groups of communicating pairs. Either ad-hoc network pairs. Or user-base station pairs

I There is interference crosstalk from other communicating pairs that we can describe with a graph

Eisen-Ribeiro, Optimal Wireless Resource Allocation with Random Edge Graph Neural Networks, arxiv.org/abs/1909.01865

A. Ribeiro Graph Neural Networks 24/50

arxiv.org/abs/1909.01865

Interference Channel

I Pairs communicate over a time varying fading channel. Pair i is interfered by neighboring pairs j

⇒ Channel is hi for communicating pair i . Transmitter allocates power pi (h). h = [h1; . . . ; hn]

⇒ Channel crosstalk from pair j to receiver of pair i is hji . Nonzero when j ∈ n(i)

I We want to select a power allocation that maximizes communication rates in some sense

p∗(h) = argmax
p(h)

Eh

[∑
i

log

(
1 +

hipi (h)

1 +
∑

j∈n(i) hijpj(h)

)]
I This is a problem we know well. We can’t solve it exactly but we can approximate it (WMMSE)

A. Ribeiro Graph Neural Networks 25/50

Model Uncertainty and Model Complexity

I There are two drawbacks to the use of WMMSE and other model based solutions

⇒ We can model the rate function but there is a mismatch between reality and model

ci = log

(
1 +

hipi (h)

1 +
∑

j∈n(i) hijpj(h)

)
+ f (h, p(h))

⇒ We modularize design but in reality we can have ∼ 103 base stations with ∼ 105 active users

I To some extent, both drawbacks can be ameliorated with an ML parametrization

⇒ The function f is unknown but it is possible to probe the environment to evaluate f (x, u)

⇒ The optimization problem is too difficult (large scale). The parametrization may make it easier

I ML parametrizations are justified in large scale wireless communications with uncertain models

A. Ribeiro Graph Neural Networks 26/50

Interference Channel as a Statistical Learning Problem

I Unsupervised statistical learning data to actions that minimize and expected loss

u∗(x) = argmin
u(x)

Ex

[
f
(

x, u(x)
)]

I Given fading channel we search for a power allocation that maximizes expected sum rates

p∗(h) = argmax
p(h)

Eh

[∑
i

log

(
1 +

hipi (h)

1 +
∑

j∈n(i) hijpj(h)

)]
I Fading channel ∼ Data. Power allocation ∼ classifier. Capacity function ∼ loss.

I Parametrize with a Neural Network. Or parametrize with a Graph Neural Network. Either way

(∗ = argmax
θ

Eh

[∑
i

log

(
1 +

hipi (h,()

1 +
∑

j∈n(i) hijpj(h,()

)]

Eisen-Zhang-Chamon-Lee-Ribeiro, Learning Optimal Resource Allocations in Wireless Systems, TSP 2019, arxiv.org/abs/1807.08088

A. Ribeiro Graph Neural Networks 27/50

arxiv.org/abs/1807.08088

Learning at Scale with Graph Neural Networks

I GNNs, fully connected neural networks, and WMMSE performance on networks of varying size

Ad-hoc network with 20 pairs Ad-hoc network with 50 pairs

0 0.5 1 1.5 2 2.5 3 3.5 4

104

0

0.5

1

1.5

2

2.5

3

3.5

I A GNN parametrized resource allocation scales to large networks ⇒ The only solution that scales

Eisen-Ribeiro, Optimal Wireless Resource Allocation with Random Edge Graph Neural Networks, arxiv.org/abs/1909.01865

A. Ribeiro Graph Neural Networks 28/50

arxiv.org/abs/1909.01865

Transferring for Scale

I GNN built for 50 pairs generalizes to larger networks

⇒ Performance of GNN trained with 50 nodes exectured on networks with up to 500 nodes

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

I No need for retraining ⇒ exploits permutation equivariance of graph convolution

A. Ribeiro Graph Neural Networks 29/50

Invariance and Stability Properties of Graph Neural Networks

Machine Learning for Graph Signals

Authorship Attribution

Learning Decentralized Controllers in Distributed Systems

Learning Optimal Resource Allocations in Wireless Communications Networks

Invariance and Stability Properties of Graph Neural Networks

Concluding Remarks

A. Ribeiro Graph Neural Networks 30/50

Why do Graph Neural Networks Work?

I The engineer is satisfied. Proposed a technique. Showed it worked. But the scientist is not

I Whether on lines, grids, or arbitrary graphs we write convolutions as polynomials z =
∞∑
k=0

hkSk x

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8

I What is good about GNNs and graph filters that makes them good at machine learning on graphs?

A. Ribeiro Graph Neural Networks 31/50

Convolutions are Useful in Time Because of Shift Equivariance

I Given a training set of input-output example pairs T {(x, y)} and a loss function f (·, y)

I Find the best arbitrary linear regressor for the average loss ⇒ H∗ = argmin
H

∑
(x,y)∈T

f
(

Hx,y
)

I Or, the best convolution regressor regressor ⇒ H∗ = argmin
h

∑
(x,y)∈T

f

(∞∑
k=0

hkSk x, y

)

I The linear regressor is better than the convolution by definition. Both are linear. One is generic

⇒ This is true in the test set. In reality, the convolution does better. It generalizes

I We know why this happens ⇒ The convolution is equivariant to time shifts

⇒ CNNs inherit this property from filters. Explaining their good performance (Mallat ’12)

A. Ribeiro Graph Neural Networks 32/50

Graph Convolutions are Useful Because of Permutation Equivariance

I Define the graph convolution operator Φ(x; S,H) =
∞∑
k=0

hk Sk x

I Φ depends on input signal x, graph shift operator S and filter tensor H = {hk}∞k=0

Theorem (Gama, Ribeiro, Bruna)

Graph convolutions are equivariant to permutations. For graphs with permuted shift
operators Ŝ = PTSP and permuted graph signals x̂ = PTx it holds

Φ(x̂; Ŝ,H) = PTΦ(x; S,H)

Proof ⇒ Φ(x̂; Ŝ,H) =
∞∑
k=0

hk Ŝk x̂ =
∞∑
k=0

hk (PTSP)kPTx = PT

(∞∑
k=0

hk Skx

)
= Φ(x; S,H)

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, arxiv.org/abs/1905.04497

A. Ribeiro Graph Neural Networks 33/50

arxiv.org/abs/1905.04497

GNNs Inherit Permutation Equivariance from Graph Filters

I GNN compose a cascade of layers

I Themselves compositions of graph filters with
pointwise nonlinearities

I A pointwise operation does not mix components.
It’s independent of the graph.

I GNN retains permutation equivariance

Layer 1

Layer 2

Layer 3

x

z1 =
∞∑
k=0

h1kSk x x1 = σ
[

z1

]z1

z1 =
∞∑
k=0

h2kSk x1 x2 = σ
[

z2

]z2

z1 =
∞∑
k=0

h3kSk x2 x3 = σ
[

z3

]z3

x1
x1

x2
x2

x3 = Φ(x; H, S)

A. Ribeiro Graph Neural Networks 34/50

Permutation Equivariance of Graph Neural Networks

Theorem (Gama, Ribeiro, Bruna)

GNNs are equivariant to permutations. For graphs with permuted shift operators Ŝ = PTSP and
permuted graph signals x̂ = PTx it holds

Φ(x̂; Ŝ,H) = PTΦ(x; S,H)

where Φ(x̂; Ŝ,H) is the output of processing x̂ on Ŝ with GNN H and Φ(x; S,H) is the output of
processing x on S with the same GNN H.

I Signal Processing with Graph Neural Networks is independent of labeling

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, arxiv.org/abs/1905.04497

A. Ribeiro Graph Neural Networks 35/50

arxiv.org/abs/1905.04497

Equivariance to Permutations is More Valuable than Apparent

I Invariance to node relabelings allows GNNs to exploit internal symmetries of graph signals

I Although different, signals on (a) and (b) are permutations of one other

⇒ Permutation invariance means that the GNN can learns to classify (b) from seeing (a)

1 2

3

45

6 7 10

8 9

12 11

1 2

3

45

6 7 10

8 9

12 11

11 12

7

89

10 3 6

4 5

2 1

(a) (b) (c)

I Permutation Equivariance is not a good idea in all problems ⇒ Edge-Variant GNNs

Isufi-Gama-Ribeiro, Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs, arxiv.org/abs/1903.01298

A. Ribeiro Graph Neural Networks 36/50

arxiv.org/abs/1903.01298

Equivariance to Permutations is a Property of Graph Filters

I Permutation equivariance is a property of graph convolutions inherited to GNNs

⇒ Q1: What is good about pointwise nonlinearities?

⇒ Q2: What is wrong with linear graph convolutions?

I A2: They can be unstable to perturbations of the graph if we push their discriminative power

I A1: They can be made stable to perturbations while retaining discriminability

I Beautifully, these questions can be answered with an analysis in the spectral domain

A. Ribeiro Graph Neural Networks 37/50

Graph Convolutions in the Frequency Domain

I Graph convolution is a polynomial on the shift operator ⇒ y =
∞∑
k=0

hkSkx

I Decompose operator as S = VHΛV to write the spectral representation of the graph convolution

VHy =
∞∑
k=0

hk(VHSV)k VHx ⇒ ỹ =
∞∑
k=0

hkΛk x̃

I where we have used the graph Fourier transform (GFT) definitions x̃ = VHx and ỹ = VHy

I Graph convolution is a pointwise operation in the spectral domain

⇒ Determined by the (graph) frequency response ⇒
∞∑
k=0

hkλ
k
k

A. Ribeiro Graph Neural Networks 38/50

Graph Frequency Response

I We can reinterpret the frequency response as a polynomial on continuous λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

λ1 λi λN

I Frequency response is the same no matter the graph ⇒ It’s instantiated on its particular spectrum

A. Ribeiro Graph Neural Networks 39/50

Graph Frequency Response

I We can reinterpret the frequency response as a polynomial on continuous λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

λ̂1 λ̂i λ̂N

I Frequency response is the same no matter the graph ⇒ It’s instantiated on its particular spectrum

A. Ribeiro Graph Neural Networks 39/50

Graph Frequency Response

I We can reinterpret the frequency response as a polynomial on continuous λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

λ1 λ̂1 λi λ̂i λN λ̂N

I Frequency response is the same no matter the graph ⇒ It’s instantiated on its particular spectrum

A. Ribeiro Graph Neural Networks 39/50

Restricting the Class of Allowable Filters

I Let h(λ) be the frequency response of filter H. We say H is integral Lipschitz if |λh′(λ)| ≤ C

λ1 = 0 λ2 λ3 λ4

I Integral Lipschitz filters have to be wide for large λ ⇒ They can’t discriminate

I But they can be thin for low λ ⇒ They can discriminate. Arbitrarily discriminate

A. Ribeiro Graph Neural Networks 40/50

Measuring Graph Perturbations

I To measure graph perturbations introduce a relative perturbation model ⇒ Ŝ = EHS + SE

I Since graphs S and Ŝ are identical if they are permutations of each other define the set

E =
{

E : PT ŜP = EHS + SE for some P ∈ P
}

P = set of permutation matrices

I Smallest E matrix that maps S into a permutation of Ŝ is the relative distance between S and Ŝ

d(S, Ŝ) = min
E∈E
‖E‖

I This distance measures relative differences between graphs modulo permutations

⇒ In particular, it is small if the graphs are close to being permutations of each other

A. Ribeiro Graph Neural Networks 41/50

Stability of Graph Neural Networks with Integral Lipschitz Filters

I The nonlinearity σ is said to be normalized Lipschitz if ⇒ ‖σ`(x)− σ(x̂)‖ ≤ ‖x− x̂‖

Theorem
Consider a GNN with L layers having integral Lipschitz filter H` and normalized Lipschitz nonlinearities
σ`. Graphs S and Ŝ are such that their relative distance satisfies d(S, Ŝ) ≤ ε/2 and the matrix E that
achieves minimum distance satisfies ‖E/‖E‖ − I‖ ≤ ε. It holds that for all signals x

min
P∈P
‖Φ(x̂; Ŝ,H)− PTΦ(x; S,H)‖ ≤ CLε + O(ε2)

I GNNs can be made stable to graph perturbations if filters are integral Lipschitz

I Requires validity of the structural perturbation constraint ‖E/‖E‖ − I‖ ≤ ε

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, arxiv.org/abs/1905.04497

A. Ribeiro Graph Neural Networks 42/50

arxiv.org/abs/1905.04497

Proof of Stability Theorem

I The GNN stability theorem is elementary to prove for an edge dilation ⇒ multiply edges by α ≈ 1

I An edge dilation just produces a spectrum dilation ⇒ If S = VΛVH then Ŝ = V(αΛ)VH

λ1 λi λN

I Small deformations may result in large filter variations for large λ if filter is not integral Lipschitz

A. Ribeiro Graph Neural Networks 43/50

Proof of Stability Theorem

I The GNN stability theorem is elementary to prove for an edge dilation ⇒ multiply edges by α ≈ 1

I An edge dilation just produces a spectrum dilation ⇒ If S = VΛVH then Ŝ = V(αΛ)VH

λ̂1 λ̂i λ̂N

I Small deformations may result in large filter variations for large λ if filter is not integral Lipschitz

A. Ribeiro Graph Neural Networks 43/50

Proof of Stability Theorem

I The GNN stability theorem is elementary to prove for an edge dilation ⇒ multiply edges by α ≈ 1

I An edge dilation just produces a spectrum dilation ⇒ If S = VΛVH then Ŝ = V(αΛ)VH

λ̂1
λ1 λ̂i

λi λ̂N
λN

I Small deformations may result in large filter variations for large λ if filter is not integral Lipschitz

A. Ribeiro Graph Neural Networks 43/50

Proof of Stability Theorem

I The GNN stability theorem is elementary to prove for an edge dilation ⇒ multiply edges by α ≈ 1

I An edge dilation just produces a spectrum dilation ⇒ If S = VΛVH then Ŝ = V(αΛ)VH

λ1 λi λN

I Lipschitz filter is always stable ⇒ Either the eigenvalue doesn’t move. Or the filter doesn’t move

A. Ribeiro Graph Neural Networks 43/50

Proof of Stability Theorem

I The GNN stability theorem is elementary to prove for an edge dilation ⇒ multiply edges by α ≈ 1

I An edge dilation just produces a spectrum dilation ⇒ If S = VΛVH then Ŝ = V(αΛ)VH

λ̂1 λ̂i λ̂N

I Lipschitz filter is always stable ⇒ Either the eigenvalue doesn’t move. Or the filter doesn’t move

A. Ribeiro Graph Neural Networks 43/50

Proof of Stability Theorem

I The GNN stability theorem is elementary to prove for an edge dilation ⇒ multiply edges by α ≈ 1

I An edge dilation just produces a spectrum dilation ⇒ If S = VΛVH then Ŝ = V(αΛ)VH

λ̂1
λ1 λ̂i

λi λ̂N
λN

I Lipschitz filter is always stable ⇒ Either the eigenvalue doesn’t move. Or the filter doesn’t move

A. Ribeiro Graph Neural Networks 43/50

Discriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?

I They can’t simultaneously be stable to deformations and discriminate features at large eigenvalues

λN−1 λN

I Limits their value in machine learning problems where features at large eigenvalues are important

A. Ribeiro Graph Neural Networks 44/50

Discriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?

I They can’t simultaneously be stable to deformations and discriminate features at large eigenvalues

λ̂N−1 λ̂N

I Limits their value in machine learning problems where features at large eigenvalues are important

A. Ribeiro Graph Neural Networks 44/50

Discriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?

I They can’t simultaneously be stable to deformations and discriminate features at large eigenvalues

λ̂N−1
λN−1 λ̂N

λN

I Limits their value in machine learning problems where features at large eigenvalues are important

A. Ribeiro Graph Neural Networks 44/50

Nonlinearities Create Low Frequency Components

I Q1: What is good about pointwise nonlinearities?

I Preserves permutation equivariance while generating low graph frequency components

⇒ Which we can discriminate with stable filters

λ̂1
λ1 λ̂i

λi λ̂N
λN

Spectrum of rectified
graph signal

xrelu = max(x, 0)

I The nonlinearity demodulates. It creates low frequency garbage. But stable garbage

A. Ribeiro Graph Neural Networks 45/50

Nonlinearities Create Low Frequency Components

I Q1: What is good about pointwise nonlinearities?

I Preserves permutation equivariance while generating low graph frequency components

⇒ Which we can discriminate with stable filters

λ̂1
λ1 λ̂i

λi λ̂N−1
λN−1

Spectrum of rectified
graph signal

xrelu = max(x, 0)

I The nonlinearity demodulates. It creates low frequency garbage. But stable garbage

A. Ribeiro Graph Neural Networks 45/50

Concluding Remarks

Machine Learning for Graph Signals

Authorship Attribution

Learning Decentralized Controllers in Distributed Systems

Learning Optimal Resource Allocations in Wireless Communications Networks

Invariance and Stability Properties of Graph Neural Networks

Concluding Remarks

A. Ribeiro Graph Neural Networks 46/50

The Promise of Machine Learning

I The promise of Machine Learning is boundless

I Machine Learning (ML) is a set of tools for solving optimization problems with data

⇒ Other names for ML are regression, pattern recognition, or statistical signal processing

I Thus, the use of ML is justified when models are unavailable or inaccurate

I Or when they are too complex so we are better off using them as generators of simulated data

I Arguably, there are no systems in which models are available, accurate, and simple

A. Ribeiro Graph Neural Networks 47/50

The Promise of Machine Learning

I The promise of Machine Learning is boundless

A. Ribeiro Graph Neural Networks 47/50

The Reality of Machine Learning

I The reality of Machine Learning is not so boundless.

A. Ribeiro Graph Neural Networks 48/50

The Reality of Machine Learning

I The reality of Machine Learning is not so boundless. However remarkable and impressive.

A. Ribeiro Graph Neural Networks 48/50

The Reality of Machine Learning

I The reality of Machine Learning is not so boundless. However remarkable and impressive.

I In 2019 Machine Learning ≡ Deep Learning ≡ Convolutional Neural Networks (CNNs)

⇒ If they rely on convolutions, we expect CNNs to work for Euclidean signals only (time, images)

⇒ Recent remarkable successes of Neural Networks are for image and speech processing, indeed

I Fully connected neural networks do not scale. They work for small scale problems only

I In fact, no ML method works in high dimensions if we can’t exploit signal structure

A. Ribeiro Graph Neural Networks 48/50

I’m a Believer

(i) The promise of machine learning / statistical signal processing really is boundless

(ii) Realizing this promise requires success beyond Euclidean signals in time and space

⇒ True even if we just want to better our abilities in Euclidean signal processing

(iii) To succeed in non-Euclidean processing we have to operate from foundational principles

⇒ Humans live in Euclidean time and space. Out intuition does not necessarily carry.

(iv) The key to machine learning in non-Euclidean domains is to exploit signal structure ⇒ A graph

A. Ribeiro Graph Neural Networks 49/50

Concluding Remarks

I Graph Neural Networks (GNN) generalize Convolutional Neural Networks (CNN) to graph signals

⇒ They leverage structure ⇒ Machine learning in high dimensions necessitates structure

I GNNs show particular promise in distributed collaborative intelligent systems

⇒ Data needed for their execution respects the information structure of distributed systems

I GNNs can be made discriminative and stable to deformations of the graph

⇒ A property that linear filters can’t have. Explains their better performance

⇒ Analogous to stability of CNNs versus instability of convolutional filters

A. Ribeiro Graph Neural Networks 50/50

	Machine Learning for Graph Signals
	Authorship Attribution
	Learning Decentralized Controllers in Distributed Systems
	Learning Optimal Resource Allocations in Wireless Communications Networks
	Invariance and Stability Properties of Graph Neural Networks
	Concluding Remarks

