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ABSTRACT 
 
A key challenge of the air interface of the cognitive radio is 
an accurate detection of weak signals of licensed users over 
a wide spectrum range. This paper describes a method for 
first detecting and next locating in frequency a given 
primary user, even when a non-candidate interference is 
located at the same frequency. The range of SNR that is 
covered proves that the estimate is efficient for realistic 
scenarios. In addition, the good performance is kept even 
for very short data records (50 symbols of the candidate 
signal). The proposed technique shows much better 
performance than energy detectors and less complexity than 
cyclo-stationary based ones. 
 

Index Terms— Cognitive radio, spectrum sensing, 
spectrum analysis. 
 

1. INTRODUCTION 
 
Spectrum is considered to be a scarce resource since all 
frequencies below 3 GHz have been completely allocated to 
specific users. However, actual measurements show that 
most of the allocated spectrum is vastly underutilized at any 
specific location and time. This fact gives opportunity to 
unlicensed devices to be secondary users of the spectrum 
and use the frequency bands only if the official user of the 
spectrum (primary system) is not using them. In other words, 
cognitive radios have been proposed as a way to reuse this 
underutilized spectrum [1][2][3][4]. Under an open 
spectrum vision, the operator premises must detect spectrum 
vacancies from their primary users in order to offer these 
vacancies, in terms of bandwidth and time, to potential 
bidders. To achieve this reuse while guaranteeing non-

interference with the primary user, either operator premises 
or cognitive radios must detect very weak primary signals.  

This work proposes a technique for accurate detection 
of weak signals of licensed users; thus, allowing a proper 
labeling of the spectrum by distinguishing them from 
secondary or interfering users. Within the framework of 
major spectral estimation methods, including frequency 
detectors and parametric spectral estimation procedures, the 
authors have proposed in [6] a new procedure for high 
resolution spectral density estimation. This paper 
summarizes and extends previous results for either detection 
or both detection and frequency location of a given 
modulation included in a given data record. The procedure 
aims at agilely detect the presence of a candidate signal just 
from its autocorrelation function, which depends only on the 
basic pulse used by the modulation transport. The most 
interesting feature of the final spectrum labeling technique 
is the robustness in presence of other interference.  

First, this paper formulates the problem in Section 2. 
Next, Section 3 proposes a low complexity candidate 
detector, which is independent of the frequency location of 
the candidate. If a primary user has been detected, then the 
results are refined by incorporating frequency location 
information, which is summarized in Section 4. The 
performance of the obtained power level estimate is shown 
in terms of probability of detection versus false alarm. 
Finally, conclusions come in Section 5.  
 

2. PROBLEM STATEMENT 
 

In this paper we focus on detecting the presence of a 
licensed user or candidate signal just from its 
autocorrelation function (acf) or matrix CR , which depends 

only on the basic pulse used by the modulation transport. 
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More specifically, let us assume that the licensed user is 
sensed without knowing the power level neither the carrier 
frequency. The power level is not known since this level 
depends on the location of the sensing equipment. The 
carrier frequency is also unknown when the cognitive radio 
searches among different licensed bands and it is agile to 
move among them. The licensed user is assumed to use a 
known power spectral density, which mostly depends on the 
baud rate and the symbol shape. This candidate spectrum 
implies a spectral occupancy defined by S(w) for zero 
carrier frequency or base band, ( ) ( )2 2B w Bπ π− ≤ ≤ . From 
this candidate spectrum, the corresponding autocorrelation 
function is obtained, and the QxQ Toeplitz matrix CR is 

derived in accordance with the order of the spectral 
estimation procedure (i.e. Q). Note that the greater the 
record length or order Q the better is the performance of the 
procedure, but, at the same time, it increases the number of 
samples (i.e. the length of analysis) that is required to detect 
the presence or absence of the licensed user. Note that the 
record length multiplied by the number of samples per 
symbol results in the length of analysis. To simplify the 
notation, we let CR , and also any other correlation matrix of 
interest along the work, denote either the theoretical 
correlation matrix or its estimate ˆ

CR  . Even so, the reader 

should keep in mind that in applications CR  is always ˆ
CR . 

In order to explore the carrier frequency and the power 
level, the candidate correlation CR is scaled by a factor γ  

and modulated by a rank-one matrix formed by the steering 
vector at the sensed carrier frequency. The candidate 
modulated correlation CMR is shown in (1)  

( ). . H
CM C

R S S Rγ ⎡ ⎤= ⎣ ⎦
    (1) 

where   denotes the component-by-component or Schur 

product, [ ]1 exp( ) ... exp( ( 1). TS jw j Q w= −  is the 
steering frequency vector and w is the frequency where the 
estimate of the spectral density of the input signal is going 
to be produced. Note that ( )HSS.  can be considered as basic 
modulated candidate (i.e. CR is equal to a matrix with all its 
entries equal to one) and 

CM
R  the generalized one. 

Let the sensing node get data samples { }( )x n   and 

compute the QxQ correlation matrix that is associated 
with{ }( )x n  

H
n nR E x x⎡ ⎤= ⎣ ⎦      (2) 

where [ ]( ) ( 1) ( 1) T
nx x n x n x n Q= − − +  and (.)H 

denotes the conjugate transpose. The data correlation matrix  
R contains the candidate modulated correlation

CM
R together 

with AWGN of power 2σ  and interference. Under the 

assumption that the signals are uncorrelated with one 
another, R can be written as:  

 2
CM IR R R Iσ= + +      (3) 

where IR  is de interference correlation matrix.  
The problem to solve consists in finding the candidate 

autocorrelation CR from the data autocorrelation R . The 
spectral shape or candidate spectrum is assumed to be 
known in shape and bandwidth B, but the power level γ and 
the frequency location w remain unknown. The proposed 
procedure detects the licensed user activity even when it is 
far below the interference level and in the same frequency 
band. Moderate data length and low filter order is required. 
Invoking the additive decomposition of R in (3) we can 

estimate the spatial power γ and frequency location w by 
resorting to a correlation matrix subtraction or fitting 
framework. In other words, given a data autocorrelation 
matrix R , to find out the frequency and power in

CMR , 

referred hereafter as the candidate, that better fits R .  

 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1. Illustration of geodesic distances in the cone of 
the positive definite correlation matrixes. 

 
3. CANDIDATE DETECTION WITH THE 

GEODESIC DISTANCE 
 
The problem of finding a modulated candidate 
autocorrelation 

CM
R that fits best in the data autocorrelation 

can be formulated in terms of distance between these two 
autocorrelation matrixes. In order to formulate the distance, 
instead of using the traditional Euclidean metric as in [6], an 
interesting detector of the candidate can be formulated from 
the geodesic distance between the candidate (1) and the data 
matrix R ,which is a suitable metric for hermitian matrixes 

[5]. Assuming )(qλ (q=1...Q) are the generalized 
eigenvalues of the pair ( ),

CM
R Rγ , 

i.e. . . ( ). . ( ). . ,q q qCM CM
R a q R a l q R a thenγ λ= =  

   

I   
0= geod   

∞ = geod   
Rank - Deficient   

matrixes   

C R   

R   

Circle  where  
( )H

C CM SS R R . =  stays with 

constant  geol  to  
I independent ly of  S   

CM GEO R . l   
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By derivation of 2

geod with respect to γ , it is obtained that 

the geodesic distance ( )2 ,geo CMd R Rγ is minimized when the 

power level of the candidate γ is equal to the geometric 
mean of the eigenvalues of the pair ( ), CMR R , lGEO. 

Furthermore, as it is illustrated in Figure 1, the geometric 
mean of the eigenvalues is independent of the modulation. 
In other words, the geometric mean of the pair ( ), CMR R  is 

equal to the one corresponding to the pair ( ), CR R . Using 

this property, independently of the frequency location of the 
candidate, the geometric mean of the eigenvalues indicates 
how much we need to multiply the candidate in order to get 
close, in geodesic distance, to the data matrix. In summary, 
computing the determinant of 1

CR R−   implements a detector 

of the presence of the candidate in the given data. The 
detection is independent of the frequency location of the 
candidate, which represents a valuable advantage of the 
detector in terms of complexity.  

 
 
In order to test the performance of this detector an  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Performance of the so-called geodesic detector 

for a BPSK candidate. Pd versus Pfa. SNR of the candidate 
ranging from –13 dB up to –6 dB (1dB step). 

 
Figure 2 evaluates the performance of the detection 

variable lGEO in equation (4) by computing its probability of 
False Alarm vs. probability of Detection. In the scenario of 
Figure 2, the candidate spectrum is a BPSK modulation with 
rectangular pulse shape, at a baud rate of 4 samples per 
symbol. The SNR of the candidate is varied from –13dB up 

to -6dB (i.e. 1dB step). The probability of detection versus 
probability of false alarm is shown in Figure 2. The order of 
analysis is Q=8 and the samples per record were 200 
samples. 
 

As it can be seen from this figure, the performance of the 
detector is quite good, mainly taking into account its low 
complexity and its independence from the frequency 
location of the candidate. Once a licensed user has been 
detected, then its frequency location is necessary. Next 
section describes a technique for candidate frequency 
location that presents robustness to the presence of other 
interference signals. 

 
4. COMPLETE SPECTRUM LABELLING 

 
The Capon’s estimate can be formulated as a spectral 
subtraction problem [6], which basically reduces to find the 
minimum eigenvalue of (5) 

( )( ). . 0H
cR S S R Aλ ⎡ ⎤− =⎣ ⎦

   (5) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Candidate estimate for BPSK signal at frequency 
0.2 with SNR 10 dB in presence of an unmodulated 

interference located at 0.25 with the same power level 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 4. Power density for the power level estimate of the 
previous Figure 3. 
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Figure 5. Detection characteristics for a M_QAM candidate. 
SNR from –13 up to –6 dB (e.g. 1 dB step). Power level 

estimate at actual frequency of 0.2. The length of the data 
records was 200 samples and the order of the estimate Q=8 

 
 
The concept of candidate spectral density can be 

developed in terms of the filter A, i.e. the eigenvector 
associated to the minimum eigenvalue. In (6) the filter   
measures at its output a power level equal to ARAH .. ,  

which, thanks to the frequency response of the filter, is 
proportional to the output power when the candidate 
spectrum is the only contribution to the input spectrum 

( ). . . . . . .H H H H
C CMA R A A S S R A A R Aλ λ⎡ ⎤= =⎣ ⎦

    (6) 

Thus, the power level estimate can be viewed as the 
power output of the filter, normalized by the response to the 
candidate spectrum 

. .
. .

H

H
CM

A R A
A R A

γ λ= =   (7) 

Since the filter is an eigenvector with norm equal to one, the 
noise bandwidth is 

ARA
CM

H ..
1  

In summary, the spectral estimation procedure is 
summarized below in (8) 
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1

Define candidate autocorrelation matrix
at unit power level and baseband frequency

Find the maximum eigenvalue and the eigenvector

asociated of .R. . . .

ˆ

ˆ .

C

H
CM C

c

R

e R e S S R e

Power level estimate S

Density estimate s S

λ

γ λ

λ

−

−

⎡ ⎤= = ⎣ ⎦
=

= ( ). . .H H H
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      (8) 
Figure 3 depicts the power density for a scenario where a 10 
dB BPSK signal at normalized frequency of 0.2 shares the 
spectrum with an unmodulated carrier at 0.25 and 10 dB of  

Figure 6. The performance degradation with respect to 
figure 5 due to the reduction of the length of the data record 

down to 80 samples. 
 
SNR. It can be seen that the minimum eigenvalue plotted 
versus normalized frequency does not peak where the 
interference is present. At the same time the power level 
estimate at frequency 0.2 agrees with the actual power level 
of the candidate. The record length was 2000 samples, 4 
samples per symbol of the BPSK candidate. The length of 
analysis was Q=8. Figure 4 shows the corresponding 
candidate spectral density of the power level estimate shown 
in the previous figure. 

The rest of this section is devoted to show the 
performance of the power level estimate in (8) in terms of 
probability of detection, Pd, versus false alarm, Pfa. It is 
assumed that the carrier frequency of the candidate is 
known and equal to 0.2 in all the cases. Note that, when the 
central frequency is unknown, it can be determined with 
good accuracy either from the maximum of the power 
estimate, the enhanced power level estimates or the density 
estimates. In addition, the power level estimate behaves flat 
around the carrier frequency which represents robustness 
against small errors in frequency location of the candidate. 

Figure 5 shows the probability of detection versus 
false alarm for a BPSK candidate of 4 samples per symbol 
and with SNR ranging from –13 dB up to –6 dB (i.e. 1dB 
step). The length of the data record is 200 samples and the 
order of the estimate is Q=8. Note that for the same scenario 
the performance of the minimum eigenvalue is superior to 
that shown by the geometric mean of the eigenvalues 
inspired in the geodesic distance (see in Figure 2 the 
performance of GEOl  ). Figure 6 shows the degradation 
suffered by the detector when the length of the data record 
is reduced to 80 samples (i.e. equivalent to 20 symbols of 
the candidate). Increasing the length up to 2000 samples per 
record provides Pd equal to 0.99 with Pfa below 0.001 for 
SNR equal to –6 dB.  

With respect to the impact of the order of the estimate 
in the resulting performance, we experienced that whenever 
the candidate matrix size is equal to or above the length of 
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the pulse duration of the candidate, the performance 
depicted holds and it remains constant for orders above 
twice the pulse length. In these experiments, our rule set a 
length of Q=8, which corresponds to the minimum order for 
candidate with four samples per symbol. Increasing up to 16 
the filter order do not show significant changes in 
performance regardless complexity increases. 

The most interesting feature of the minimum 
eigenvalue estimate is the robustness that it shows in 
presence of other interferences. Next, Figure 7 shows the 
performance when the data signal contains an unmodulated 
interference. The record length is set to 200 samples and the 
order, set in accordance to the 4 samples per symbol of the 
candidate, was 8. The range of SNR was the same as before 
(-13 to -6 dB). Figure 8 shows the case when the 
interference is located at the same frequency than the 
candidate, 0.2. As it can be seen there is almost no 
difference with respect the case where interference was 
absent. This evidences the robustness of candidate estimate 
in front other interference sources different from the 
candidate. 

Figure 7. The same scenario as Figure 5 when an un-
modulated interference is located at 0.25 with 10 dB. The 
parameters of the detector are the same that those used for 

the mentioned Figure 5.  
 

5. CONCLUSIONS 
 

From the previous section it is clear the good 
performance of the proposed procedure in order to detect 
the transmission of the candidate, even when a non-
candidate interference is located at the same frequency. The 
range of SNR covered by the simulations proves that the 
estimate is efficient for realistic scenarios providing 
accurate detection even when the candidate is received 
below 10 dB. The performance is also good even for very 
short data records (50 symbols of the candidate signal). The 
proposed technique shows much better performance than 
energy detectors and less complexity than cyclo-stationary  

Figure 8. The same as figure 7 but with the un-
modulated carrier located at the same frequency than the 

candidate, 0.2. 
based ones. Concerning energy based detectors, note that 
they cannot perform well in the presence of interference 
close to the candidate frequency. With respect to cyclo-
stationary based detectors, they are more complex and 
require more number of samples than the proposed 
techniques. More specifically, note that the correlation value 
that is computed in a cyclo-stationary based detector is 
between two different frequencies, which, of course, will be 
lower than the correlation at zero lag, i.e. the signal power 
level. In other words, since the candidate in (8) is detected 
by a peak almost equal to the actual power level this value 
will be higher or even much higher than the correlation 
between lines at different frequencies. It may be claimed 
that the background of candidate is the white noise level and 
in the cyclo-stationary spectrum is zero since the 
background noise is stationary. However, cycle processing 
requires very long records in order to show low background 
levels. In summary the convergence of cyclo-stationary 
spectrum requires long data records, which is no longer the 
case of candidate. Finally, when frequency location is not 
needed, the present work has also proposed a candidate 
detector based on the geodesic distance. 
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