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ABSTRACT to employ a nonlinear processing to recover the transmitted
The B : lizeris imol table b | information [5]. Actually, the optimum equalizer structur
€ bayesian equalizer1s implemerntable by a proper emploYg,ip o+ decision feedback is nonlinear and is given by the

mentof a rad_ial basis function (RBF) neural _n_etw_ork, with th maximuma posteriori (MAP) equalizer, also known as Bayesian
inverse filtering problem posed as a cIaSS|f|ca_t|o_n IorOt?Iemequalizer [6]. It is known that the Bayesian equalization so
The_proposed approach ?”OWS that the t_ransrr_ussm_n Of"nfoﬁution can be implemented using radial basis function (RBF)
mation and_the RBF training be accomplished in a S'm.u“ar?eﬁeural networks, where the original inverse filtering oratec

ous and unlnterr_upted way. Moreovgr,.the_channel esnm."’lt'ovolution problem is posed as a classification problem [7, 8].
procedure remains an unimodal optimization problem. Simu- )
lation results confirm the effectiveness of the proposed RIM ~ The same Bayesian approach can be extended to MIMO
equalizer. communication systems, where RBF networks can implement

) ) ) ) _ MAP processing for multi-user detection (MUD) [9] or space-
Index Terms— Bayesian equalizer, radial basis function jme equalization [10]. The training of an RBF network to
(RBF) neural networks, superimposed training, MIMO chanyerform MAP equalization can be carried out efficiently by
nels exploiting the underlying data structure. The RBF parame-
ters must be estimated and, for this purpose, it is common to
1. INTRODUCTION use a training sequence. Two strategies are possible. Bhe fir
one consists in executing a supervised clustering proeedur

Communication systems have evolved towards the achievé0 find the RBF centers according to data distribution. This
ment of strict service requirements as low error rates aghl hi strategy is suited for both linear and nonlinear channeis, b
transmission rates. In this context, the capability of ipidt  the number of parameters to be estimated, and the compu-
input multiple-output (MIMO) channels to increase the aghi  tational complexity, grows exponentially with channel mem
able system capacity has motivated intense research in tgy, number of transmitted signals and number of equalizer
field of space-time signal processing [1, 2, 3]. inputs. For linear channels, a second strategy is appécabl
Space-time equalization has been employed to suppre¥diere the MIMO channel estimation is performed by a con-
both intersymbol interference (ISI) and co-channel irterf Vventional adaptive algorithm and used to calculate the RBF
ence (CCl) in MIMO communication systems. From the viewcenters [10]. In this approach, the number of parameters to
point of signal detection, there are basically two categpori be estimated grows only linearly with channel memory and a
of equalizers, namely sequence-estimation and symbol-bypmaller training set is needed.
symbol-decision equalizers. In the first category, the-opti  |n this work, we explore a superimposed training approach
mum equalizer is the maximum likelihood sequence estimatqu 1, 12] for adapting parameters of the RBF-MAP equalizer.
(MLSE) [4], which uses the Viterbi algorithm and presentsA [ow-power periodic training sequence is added (superim-
high computational complexity. In contrast, the addressedosed) to the information sequence at the transmitter.kenli
symbol-by-symbol-decision equalizers are typically lbese  traditional training methods, no time slots are allocated f
adaptive linear filter design, yielding simpler computatib  training. Then, there is no loss in information rate, altjiou
requirements. some useful power is wasted in the superimposed sequence.
In the context of single-input single-output (SISO) chan-This approach permits MIMO channel estimation and, as con-
nels, linear equalization may not be able to compensate fagfequence, the calculation of channel states, which is redjui
channel effects in received signals and it becomes negessab implement MAP equalization.

R. Krummenauer, F. de S. Chaves and R. Ferrari are supportetb . The rest of the paper is Organize_d as follows. _|n Sec-
scholarships from CNPg, FAPESP and CAPES, respectively. tion 2, the conventional MIMO equalization model is pre-
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sented. Section 3 introduces the Bayesian MIMO equalizevherey(k) = [yi(k),...,yn(k)]T € R¥*!is a column
and shows that it has the same structure of an RBF neural netector containing the receiver input signals at instartnd
work. The proposed scheme of superimposed training for th&/;,, is the number of samples to be taken into account for
RBF network is explained in Section 4. In Section 5, simu-equalization.

lation results illustrate the proposed MIMO equalizer perf The channel convolution matrix is defined as:

mance. Conclusions of this work are given in Section 6.

H, --- H,; 0 - 0
2. SYSTEM MODEL H= , (D)
0o --- 0 H, --- H;
A generic MIMO communication system is illustrated in Fig. 1
Subchannelb;; = [h;,...,h5]",i={1,...,N}andj =  with H € RN-NinxM-(L+Nin—1) MatricesH; € R¥*M are
{1,..., M}, represent paths of the link between the trans- given by:
mission sensoy and the reception sensar Each transmis- L, B
sion sensor transmits an independent identically digeibu H, — : : ’ @)

(i.i.d.) sequence of BPSK symbols;(k), belonging to the l .
setA = {—1;+1}. Signals that arrive at reception sen- Py - hiu
sors,z;(k), are added to a white gaussian noiggk), and
the resulting signalsy; (k), ¢ = {1, ..., N}, represent the re-
ceiver input signals. Receiver output must provide estimat
of transmitted signalss; (k — d;), j = {1, ..., M}, given an

wherehﬁj is the gain of subchannél;; at thel-th path,! =
{0,..., L — 1}. From these definitions, the following model
holds for the channel output:

equalization delayl;. yo(k) = Hs, (k) + (k) , 3)
MIMO channel with
§1(k_d1) T T T
>0 sc(k) = [s"(k),....,s" (k—L—Nym+1D]" (4)
_ T T(1. _ AT T
§2(k_dz) nc(k) - [77 (k>ﬂan (k Nln+1>] ) (5)
. o wheres.(k) € AM(L+Nin=1)x1 jg the concatenated vector
o containing the vectors of transmitted signs(lg) = [s1(k), ..., sar(k)
o andn, (k) € RV-Nix1 s the concatenated vector containing
5,(k-d,)  the vectors of sensor noisgk) = [n1(k),...,nn (k)T €
0 RNXI.

Fig. 1. MIMO communication system. 3. BAYESIAN MIMO EQUALIZER

In the proposed equalization context, the main objectite is

MIMO communication systems are classified accordind©cOVer each transmitted symbglk —d;), j = {1,..., M},

to the levels of coordination between their sensors [13]r ouVhered; denotes the equalization delay for fji¢h source.

interest in this work lies in systems where reception sensor! Ne equalizer can be seen as a classifier that divides the spac

are fully coordinated, that is, received signals can betlipin SPanned by the data vectar(k) into 5 partitions correspond-
processed to recover the signals transmitted by each tignsmind 0 €ach of the possible values of(k — d;). The opti-
sion sensor. MIMO single-user and MIMO multi-user multi- UM decision boundaries depend on the equalization delay,

access systems are examples of such systems. In this wdiil'i‘ta noise and channel states. The channel states are defined
the focus is on MIMO single-user systems. as the possible values of received signals in the absence of

noise. Thep-th state associated with the transmitted sequence
2.1. MIMO Equalization of symbolss, is defined as
MIMO equalizers are designed to exploit diversity in space ¢, = E{yclsp}, (6)

and time domains to combat effects of MIMO channels. In _ M(Lt-Nom—1)
order to model MIMO equalization, the channel output orVhere B} denotes the expectation operator apd: A e

equalizer input can be expressed by the concatenated vectofN® number of channel states is equal to the number of possi-
ble different sequencag and, thus, we hav; = 2 (L+Nin—1)

states, since the transmitted symbols belong to a binahaalp
ye(k) = [yT(k),...,yT(k — Ny, + 1)]T € RV Ninx1 bet and the length of the sequenggds M - (L + N, — 1).
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Note that it is not dependent on the number of reception semnapping of an RBF network [10]:

sors.
The channel states of ordak,, are given by the columns
of the matrix:
CL:HS:[Cl Co (7)
whereC;, € RN NinxN: H js the channel convolution ma-
trix given by (1), andS € AM (L+Nin=1)xNs jg g matrix

CNS}a

N
frer;(ye(k)) > wp 0 (ye(k))

ok < lye(k) —up|2>
Zwm‘ exp| ———m@@@8@8@8@ |,
p=1 P

whoseN, columns are formed by all possible distinct symbolWhere the radial basis functions (-) are Gaussian, with dis-

sequences,,.

persionp = 202 and centered at the points, associated with

As mentioned above, the Bayesian equalizer is derivel® respective channel staigs The weightsw, ; of the out-

from the maximuma posteriori (MAP) criterion [6]. We
shall refer to this equalizer as maximuarposteriori space-
time equalizer (MAP-STE). The MAP-STE decision function
is determined by the conditional probability density fuoot
of vectory.(k) with respect to channel states(y.(k)|c,).
Thus, to minimize the probability of classification errdrisi
needed to maximize the posteriori probability of transmit-
ted symbol,P(s;(k — d;)|y.(k)). Since the symbol alphabet

put layer are set te-1 according to the value of; (k — d;)
associated to the respective channel state

Therefore, the RBF network structure corresponds to the
Bayesian equalizer. Perfect knowledge of the channel and
noise statistics allows the implementation of the optimuRv
STE through an RBF network. However, such information is
not availablea priori and the RBF must be trained to esti-
mate its parameters. In next section, the scheme of network

is binary, this maximization process can be carried out by ugraining is addressed.

ing the decision function below:

IB,i(ye(k)) P(sj(k — dj) = +1]yc(k)

—P(sj(k —dj) = —1lyc(k)), (8)

where the value of s ;(y.(k)) is positive whenP(s;(k —
d;) = +1lyc(k)) = P(s;j(k — d;) = —1|y.(k)) and nega-
tive WhenP(Sj(k' — dJ) = +1|yc(k')) < P(Sj(k — dJ) =
1]y (k)).

Therefore, symbol detection in MAP-STE is accomplished

as follows:

3j(k —dj) sgn( [, (ye(k)))
{ +1 if f5;(yc(k)) =0

1 i fpyyetk) <0 0 ©

4. SUPERIMPOSED TRAINING-BASED MIMO
CHANNEL ESTIMATION

In this work, the Bayesian equalizer for MIMO channels is
implemented through an RBF neural network, where MIMO
channel estimates are used to calculate the RBF centers- Cha
nel estimation is commonly performed by conventional su-
pervised techniques, where the transmission of informatio
is periodically interrupted for the transmission of a tiafm
equence. Regarding the process of optimization, supervis
techniques are characterized by unimodal cost functions du
ing the training period. In contrast, unsupervised techedq
can perform a continuous process of training without ingesr
tion of information transmission. However, such technigjue
are faced with local optima. Our proposal for estimating the
MIMO channel is based on the transmission of an uninter-

It can be shown that the MAP-STE decision function for ad-yypted pilot sequence superimposed to each information se-
ditive white gaussian noise (AWGN) channels can be W“tte'?quence. The advantage of this approach is that it combines

in the form [10]:

N, F—e?
o3 = Y-y (2ol
p=1

) , (10)

wherew, ; = +1if ¢, belongs to the set of states for which
sj(k —d;) = +1, andw, ; = —1if c, belongs to the set
of states for whichs;(k — d;) = —1. Then, the MAP-STE

the best features from both supervised and unsupervised tec
nigues: it permits uninterrupted and simultaneous pr@asess
of information transmission and channel estimation, amrd th
cost function to be optimized is unimodal. On the other hand,
some power must be used in the superimposed training se-
quence.

The scheme of MIMO channel estimation based on su-
perimposed training is illustrated in Fig. 2, whelé trans-
mission sensors anl reception sensors are considered. The

decision function given in (10) is nonlinear and completelyMIMO channel to be estimated is composed of subchannels

defined by channel states and noise statistics.
The idea of implementing the MAP-STE by using an RBF

hij = [hi, ..., h] " withi = {1,..., N}, j ={1,..., M},
andL paths in each link. Using a spread spectrum technique,

neural network comes from the mathematical similarity be-a binary pilot sequence; (k) = [m;(k),...,m;(k — L +

tween the MAP-STE decision function and the input-outputl )] is added to information sequersgk) = [s;(k), . ..
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L + 1)]T at each transmission sensor. Therefore, the se-

quence to be transmitted becongsk) = s, (k)+m;(k), for m; (k)
j=A{1,..., M}. The pilot sequence is a periodic nonrandom mi(k) = [wh,...,why] : ) (13)
signal uncorrelated with the information signal. '
mys (k?)
MIMO channel 17,0k) According to the Wiener criterion, a cost function=
A (- B 1| (k) [e2(k)] is defined as the expectation of the squared error for
| | each subchannel vector to be estimated as follows:
| |
. ! k)
AN S S AC J (wei) = E[52(K)] ~ WZE [m(k)m (k)]
Lty ~E[hfm.(k)m{ (k)] we;
. | ° +wLE [m.(k)mZ (k)] we;, (14)
o | | o
! () whereh,; = [hY,....h],], we; = [wh,...,w},] and
(k) | (k) m, = [my (k),...,my(k)]”. Since the insertion of the pilot
| | - sequence into the signal to be transmitted is carried out by a
__________ spread spectrum procedure, sigrgjsandm; are indepen-
dent. Then, if they are zero-mean sequences, the following
MIMO channel estimate relations can be stated:
ml(k)ojr ————————— v (k) _YV+
| ' 2 2
| N Elyi(k)] = o,
m, (k) : I m, (k) _y+ [ _] Y
CH : > pi1
N 7 E[m(k)m?(k)he] = | : | = pa
o o P |
| -
my, (k) 1 S (k) v Ry 0 0
704 | N —
T Ny i E [m.(k)m] (k)] 0 R - R
RRREC il I I
e, (k) 0 -+ 0 Rpy |
ey (k)

whereagi is the power of receiver input signaf; p.; andR..
d’epresentthe cross-correlation and the autocorrelatieaah

Fig. 2. MIMO channel estimation based on superimposed . .
pilot sequencen,, respectively.

training. From (14) and relations above, one can write the Wiener
error surface in canonical form for the MIMO channel esti-
At each symbol interval, each receiver inpytk), i =  mation using a pilot sequence:
{1,..., N}, can be expressed as:

J (Wcz) = O—; - Wg;pcz - pz;wcz + Wg;Rcwci~ (15)

yi(k) = [hg’ "hZTM} : + (k). Then, tt;e \_N|ener.solut|on applies, with the optimum esti-
mateswy; given by:

SM(k) + mM(k)

(11)
In order to obtain the MIMO channel estimates; = [w}j, e ,wiLj]T, w? = R 'pui, (16)
i=1{1,...,N},7={1,..., M}, one can use the error sig- “ ¢
nalse; (k), and as consequence, the minimum value of cost fundtitsn
~ expressed as:

ei(k) = mi(k) — yi(k), (12)
wherem;(k), i = {1,..., N}, are the received pilot signals _ ) S
passed through the estimated channel: min J (wei) = oy, — PeiRe " Pei- 17)
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It can be observed that the optimum solution to this MIMO
channel estimation problem depends only on the pilot sexpier

ITR=20dB

f : f ; imi , ITR=15dB
The information signal has influence only on the minimum  10? . ITRetods ]

value of the cost function, but not on the optimum solution
w;.

In practice, the MIMO channel estimation task can be car
ried out by conventional adaptive algorithms. Becausesof it
convergence properties, we employ the recursive leastsgua
(RLS) algorithm. The RLS algorithm is executed for each
reception sensot, where the input signal ig;. As can be

observed in (11), the subchannels related to sehaoe ar-

MSE

ranged in a concatenated vectf/,, ..., h7,,|. Then, the
corresponding concatenated vector of subchannels esmat
[wh,...,wl,], can be obtained by using the RLS algo- 0
rithm. ' " lterations —
5. SIMULATION RESULTS Fig. 3. MSE of superimposed training-based channel estima-

tion for three values of ITR and SNR 20 dB.
In this section, we evaluate the proposed adaptive equalize

for MIMO channels as an implementation of the Bayesian

(MAP-STE) equalizer through computer simulations. We con- ] ]

sider a communication system willi = 2 transmission sen- "€ceivedsignalsi, = d, = 1 symbolinterval. Moreover, the
sors andNV = 2 reception sensors. The considered MIMONumber of samples of the received vectors used as equalizer
channel had, = 2 paths and is expressed below: inputs isN;, = 2. The BER curve of the Wiener minimum

mean squared error (MMSE) linear equalizer is also illus-
trated in Fig. 4. In this caséy;,, = 15 equalizer inputs were

H, — [ L 05 ] . H, = [ 0.6 1.2 ] . (18) considered. It is noted that the performance of the Wiener
0.8 0.6 0.3 0.9 equalizer is dramatically poor for the considered channel.

As exposed in Section 4, the RLS algorithm uses the su-
perimposed training sequence to perform the MIMO channe o
estimation. Fig. 3 shows the mean squared error (MSE) ¢
channel estimation along the RLS iterations for three \&lue
of information-to-training power ratio (ITR), namely 10 dB
15 dB and 20 dB. Different ITR values are accomplished by
adjusting the training sequence power, since the infoonati
sequence power level is fixed. The presented MSE is calct
lated as follows:

BER
=
o

L—1—M N 2
1=0 Zj:l Zi:1 ‘hig - wé,j‘ —B— MAP-STE

MSE = (19) 5| | =+ Wiener
L-M-N ’ 10 f| —@—Proposed - ITR=10dB] ~ ~ '~~~ T~~~ T~ 7~ 7§
. . —&— Proposed - ITR=15dB ! ! |
and these curves represent the average of 5000 simulatior [ == Proposed - ITR=20d8 | | |
The signal-to-noise power ratio (SNR) is 20 dB. 105, 5 10 15 20 25 30 35

It can be observed that lower values of ITR provide bet- SNR (d8)

ter channel estimates. The estimation task becomes easier
for lower ITR values, since they mean training signals withFig. 4. BER performance of MAP-STE, proposed equalizer,
higher power. On the other hand, it is noted that ITR does naand Wiener linear equalizer.
influence the speed of convergence.

In order to evaluate the proposed equalizer as an imple-
mentation of the MAP-STE, we presentin Fig. 4 the bit error  For MAP-STE, the available power is entirely used in the
rate (BER) curves of the MAP-STE and of three configurainformation signal transmission, since it is the optimum re
tions of the proposed equalizer. Such curves represent tloeiver, where perfect channel information is assumed. Dif-
overall BER, i.e., they are related to the two transmitted seferent configurations of the proposed equalizer are defiged b
guences. The same equalization delay is considered for bo#iharing the available transmission power between infdonat
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and training signals, such that the desired ITR values be ob- izers,” Journal of the Brazlian Telecommunications So-
tained. Towards a fair comparison, the same amount of power  ciety, vol. 14, no. 2, pp. 85-92, Nov. 1999.
is available in all simulations.

It is expected that the proposed equalizer performs betted©]
for lower values of ITR, since in such scenarios the quality "
of channel estimates is better. This behavior is confirmed, ~ €Nce,” Proc. IEEE, vol. 58, no. 5, pp. 779-785, May
but it is more evident for high SNR values, where the equal- 1970.
ization process is more influenced by the quality of channelm S. Chen, B. Mulgrew, and P. M. Grant,
estimates. In scenarios with low or moderate values of SNR, technique for digital communications channel equaliza-
the different configurations of the proposed equalizerimge tion using radial basis function networkd EEE Trans.
of ITR present BER curves very close to that of MAP-STE. Neural Networks, vol. 4, no. 4, pp. 570-579, Jul. 1993.

It is worth noting that from an ITR about 15 dB, the pro-
posed equalizer practically attains the BER performance of[8] S. Chen, S. McLaughlin, B. Mulgrew, and P. M. Grant,

K. Abend and B. D. Fritchman, “Statistical detection
for communication channels with intersymbol interfer-

“A clustering

the MAP-STE, even for high SNR. “Adaptive bayesian decision feedback equalizer for dis-
persive mobile radio channeldEEE Trans. Communi-
6. CONCLUSIONS cations, vol. 43, no. 5, pp. 1937-1946, May 1995.

_ _ ) ) [9] K. Ko, S. Choi, C. Kang, and D. Hong, “RBF-based
Theimplementation of the Bayesian equalizer for MIMO chan-* i ser detector with channel estimation capability in

pels by means 01_‘ r?(dlal basr;:s function (RBFk) neural netwgrks a synchronous MC-CDMA system[EEE Trans. Neu-
is addressed. _It is known that RBF networks must be trained Networks, vol. 12, no. 6, pp. 1536—1539, Nov. 2001.
to perform their tasks properly. In this context, it is connmo

to use a training sequence in supervised procedures of clug0] A. Wolfgang, S. Chen, and L. Hanzo, “Radial basis

tering or channel estimation to define the RBF parameters. function network assisted space-time equalisation for
In this work, we propose the use of a low-power super- dispersive fading environmentsJEE Electronics Let-
imposed pilot sequence to perform the MIMO channel esti- ters, vol. 40, no. 16, Aug. 2004.

mation and the subsequent adaptation of the RBF parameters. ) . o )
This approach has the advantage to allow an uninterrupted ikt1] J- K. Tugnaitand W. Luo, “On channel estimation using

formation transmission and network training, both in patal superimposed training and first-order statistictEE
Moreover, the channel estimation problem correspondsgto th ~ Communications Letters, vol. 7, no. 9, pp. 413-415,
optimization of a unimodal cost function that leads to the op Sep. 2003.

timal solution according to the Wiener criterion. Simubati [12] A.R.Varma, L. L. H. Andrew, C. R. N. Athaudage, and
results reveal that the performance of the proposed egualiz 3 H. Manton. “lterative algé)rithms for channel iden-
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