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ABSTRACT

The Bayesian equalizer is implementable by a proper employ-
ment of a radial basis function (RBF) neural network, with the
inverse filtering problem posed as a classification problem.
The proposed approach allows that the transmission of infor-
mation and the RBF training be accomplished in a simultane-
ous and uninterrupted way. Moreover, the channel estimation
procedure remains an unimodal optimization problem. Simu-
lation results confirm the effectiveness of the proposed MIMO
equalizer.

Index Terms— Bayesian equalizer, radial basis function
(RBF) neural networks, superimposed training, MIMO chan-
nels

1. INTRODUCTION

Communication systems have evolved towards the achieve-
ment of strict service requirements as low error rates and high
transmission rates. In this context, the capability of multiple-
input multiple-output (MIMO) channels to increase the achiev-
able system capacity has motivated intense research in the
field of space-time signal processing [1, 2, 3].

Space-time equalization has been employed to suppress
both intersymbol interference (ISI) and co-channel interfer-
ence (CCI) in MIMO communication systems. From the view-
point of signal detection, there are basically two categories
of equalizers, namely sequence-estimation and symbol-by-
symbol-decision equalizers. In the first category, the opti-
mum equalizer is the maximum likelihood sequence estimator
(MLSE) [4], which uses the Viterbi algorithm and presents
high computational complexity. In contrast, the addressed
symbol-by-symbol-decision equalizers are typically based on
adaptive linear filter design, yielding simpler computational
requirements.

In the context of single-input single-output (SISO) chan-
nels, linear equalization may not be able to compensate for
channel effects in received signals and it becomes necessary

R. Krummenauer, F. de S. Chaves and R. Ferrari are supported by PhD
scholarships from CNPq, FAPESP and CAPES, respectively.

to employ a nonlinear processing to recover the transmitted
information [5]. Actually, the optimum equalizer structure
without decision feedback is nonlinear and is given by the
maximuma posteriori (MAP) equalizer, also known as Bayesian
equalizer [6]. It is known that the Bayesian equalization so-
lution can be implemented using radial basis function (RBF)
neural networks, where the original inverse filtering or decon-
volution problem is posed as a classification problem [7, 8].

The same Bayesian approach can be extended to MIMO
communication systems, where RBF networks can implement
MAP processing for multi-user detection (MUD) [9] or space-
time equalization [10]. The training of an RBF network to
perform MAP equalization can be carried out efficiently by
exploiting the underlying data structure. The RBF parame-
ters must be estimated and, for this purpose, it is common to
use a training sequence. Two strategies are possible. The first
one consists in executing a supervised clustering procedure
to find the RBF centers according to data distribution. This
strategy is suited for both linear and nonlinear channels, but
the number of parameters to be estimated, and the compu-
tational complexity, grows exponentially with channel mem-
ory, number of transmitted signals and number of equalizer
inputs. For linear channels, a second strategy is applicable,
where the MIMO channel estimation is performed by a con-
ventional adaptive algorithm and used to calculate the RBF
centers [10]. In this approach, the number of parameters to
be estimated grows only linearly with channel memory and a
smaller training set is needed.

In this work, we explore a superimposed training approach
[11, 12] for adapting parameters of the RBF-MAP equalizer.
A low-power periodic training sequence is added (superim-
posed) to the information sequence at the transmitter. Unlike
traditional training methods, no time slots are allocated for
training. Then, there is no loss in information rate, although
some useful power is wasted in the superimposed sequence.
This approach permits MIMO channel estimation and, as con-
sequence, the calculation of channel states, which is required
to implement MAP equalization.

The rest of the paper is organized as follows. In Sec-
tion 2, the conventional MIMO equalization model is pre-
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sented. Section 3 introduces the Bayesian MIMO equalizer
and shows that it has the same structure of an RBF neural net-
work. The proposed scheme of superimposed training for the
RBF network is explained in Section 4. In Section 5, simu-
lation results illustrate the proposed MIMO equalizer perfor-
mance. Conclusions of this work are given in Section 6.

2. SYSTEM MODEL

A generic MIMO communication system is illustrated in Fig. 1.
Subchannelshij = [h1

ij , . . . , h
L
ij ]

T , i = {1, . . . , N} andj =
{1, . . . , M}, representL paths of the link between the trans-
mission sensorj and the reception sensori. Each transmis-
sion sensor transmits an independent identically distributed
(i.i.d.) sequence of BPSK symbols,sj(k), belonging to the
set A = {−1; +1}. Signals that arrive at reception sen-
sors,xi(k), are added to a white gaussian noise,ηi(k), and
the resulting signals,yi(k), i = {1, ..., N}, represent the re-
ceiver input signals. Receiver output must provide estimates
of transmitted signals,̂sj(k − dj), j = {1, ..., M}, given an
equalization delaydj .

Fig. 1. MIMO communication system.

MIMO communication systems are classified according
to the levels of coordination between their sensors [13]. Our
interest in this work lies in systems where reception sensors
are fully coordinated, that is, received signals can be jointly
processed to recover the signals transmitted by each transmis-
sion sensor. MIMO single-user and MIMO multi-user multi-
access systems are examples of such systems. In this work
the focus is on MIMO single-user systems.

2.1. MIMO Equalization

MIMO equalizers are designed to exploit diversity in space
and time domains to combat effects of MIMO channels. In
order to model MIMO equalization, the channel output or
equalizer input can be expressed by the concatenated vector:

yc(k) = [yT (k), . . . ,yT (k − Nin + 1)]T ∈ R
N ·Nin×1 ,

wherey(k) = [y1(k), . . . , yN(k)]T ∈ R
N×1 is a column

vector containing the receiver input signals at instantk and
Nin is the number of samples to be taken into account for
equalization.

The channel convolution matrix is defined as:

H =







H0 · · · HL−1 0 · · · 0

. . .
. . .

0 · · · 0 H0 · · · HL−1






, (1)

with H ∈ R
N ·Nin×M·(L+Nin−1). MatricesHl ∈ R

N×M are
given by:

Hl =







hl
11 · · · hl

1M
...

...
hl

N1 · · · hl
NM






, (2)

wherehl
ij is the gain of subchannelhij at thel-th path,l =

{0, . . . , L − 1}. From these definitions, the following model
holds for the channel output:

yc(k) = Hsc(k) + ηc(k) , (3)

with

sc(k) = [sT (k), . . . , sT (k − L − Nin + 1)]T (4)

ηc(k) = [ηT (k), . . . , ηT (k − Nin + 1)]T , (5)

wheresc(k) ∈ A
M·(L+Nin−1)×1 is the concatenated vector

containing the vectors of transmitted signalss(k) = [s1(k), . . . , sM (k)]
andηc(k) ∈ R

N ·Nin×1 is the concatenated vector containing
the vectors of sensor noiseη(k) = [η1(k), . . . , ηN (k)]T ∈
R

N×1.

3. BAYESIAN MIMO EQUALIZER

In the proposed equalization context, the main objective isto
recover each transmitted symbolsj(k−dj), j = {1, . . . , M},
wheredj denotes the equalization delay for thej-th source.
The equalizer can be seen as a classifier that divides the space
spanned by the data vectoryc(k) intoS partitions correspond-
ing to each of the possible values ofsj(k − dj). The opti-
mum decision boundaries depend on the equalization delay,
data noise and channel states. The channel states are defined
as the possible values of received signals in the absence of
noise. Thep-th state associated with the transmitted sequence
of symbolssp is defined as

cp = E{yc|sp} , (6)

where E{·} denotes the expectation operator andsp ∈ A
M·(L+Nin−1).

The number of channel states is equal to the number of possi-
ble different sequencessp and, thus, we haveNs = 2M·(L+Nin−1)

states, since the transmitted symbols belong to a binary alpha-
bet and the length of the sequencesp is M · (L + Nin − 1).
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Note that it is not dependent on the number of reception sen-
sors.

The channel states of orderNin are given by the columns
of the matrix:

CL = HS =
[

c1 c2 · · · cNs

]

, (7)

whereCL ∈ R
N ·Nin×Ns , H is the channel convolution ma-

trix given by (1), andS ∈ A
M·(L+Nin−1)×Ns is a matrix

whoseNs columns are formed by all possible distinct symbol
sequencessp.

As mentioned above, the Bayesian equalizer is derived
from the maximuma posteriori (MAP) criterion [6]. We
shall refer to this equalizer as maximuma posteriori space-
time equalizer (MAP-STE). The MAP-STE decision function
is determined by the conditional probability density function
of vectoryc(k) with respect to channel states,p(yc(k)|cp).
Thus, to minimize the probability of classification error, it is
needed to maximize thea posteriori probability of transmit-
ted symbol,P (sj(k − dj)|yc(k)). Since the symbol alphabet
is binary, this maximization process can be carried out by us-
ing the decision function below:

fB,j(yc(k)) = P (sj(k − dj) = +1|yc(k))

−P (sj(k − dj) = −1|yc(k)) , (8)

where the value offB,j(yc(k)) is positive whenP (sj(k −
dj) = +1|yc(k)) ≥ P (sj(k − dj) = −1|yc(k)) and nega-
tive whenP (sj(k − dj) = +1|yc(k)) < P (sj(k − dj) =
−1|yc(k)).

Therefore, symbol detection in MAP-STE is accomplished
as follows:

ŝj(k − dj) = sgn(fB,j(yc(k)))

=

{

+1 if fB,j(yc(k)) ≥ 0
−1 if fB,j(yc(k)) < 0

. (9)

It can be shown that the MAP-STE decision function for ad-
ditive white gaussian noise (AWGN) channels can be written
in the form [10]:

fB,j(yc(k)) =

Ns
∑

p=1

wp,j exp

(

−
‖yc(k) − cp‖

2

2σ2

)

, (10)

wherewp,j = +1 if cp belongs to the set of states for which
sj(k − dj) = +1, andwp,j = −1 if cp belongs to the set
of states for whichsj(k − dj) = −1. Then, the MAP-STE
decision function given in (10) is nonlinear and completely
defined by channel states and noise statistics.

The idea of implementing the MAP-STE by using an RBF
neural network comes from the mathematical similarity be-
tween the MAP-STE decision function and the input-output

mapping of an RBF network [10]:

fRBF,j(yc(k)) =

Ns
∑

p=1

wp,jϕp(yc(k))

=

Ns
∑

p=1

wp,j exp

(

−
‖yc(k) − µp‖

2

ρ

)

,

where the radial basis functionsϕp(·) are Gaussian, with dis-
persionρ = 2σ2 and centered at the pointsµp associated with
the respective channel statescp. The weightswp,j of the out-
put layer are set to±1 according to the value ofsj(k − dj)
associated to the respective channel statecp.

Therefore, the RBF network structure corresponds to the
Bayesian equalizer. Perfect knowledge of the channel and
noise statistics allows the implementation of the optimum MAP-
STE through an RBF network. However, such information is
not availablea priori and the RBF must be trained to esti-
mate its parameters. In next section, the scheme of network
training is addressed.

4. SUPERIMPOSED TRAINING-BASED MIMO
CHANNEL ESTIMATION

In this work, the Bayesian equalizer for MIMO channels is
implemented through an RBF neural network, where MIMO
channel estimates are used to calculate the RBF centers. Chan-
nel estimation is commonly performed by conventional su-
pervised techniques, where the transmission of information
is periodically interrupted for the transmission of a training
sequence. Regarding the process of optimization, supervised
techniques are characterized by unimodal cost functions dur-
ing the training period. In contrast, unsupervised techniques
can perform a continuous process of training without interrup-
tion of information transmission. However, such techniques
are faced with local optima. Our proposal for estimating the
MIMO channel is based on the transmission of an uninter-
rupted pilot sequence superimposed to each information se-
quence. The advantage of this approach is that it combines
the best features from both supervised and unsupervised tech-
niques: it permits uninterrupted and simultaneous processes
of information transmission and channel estimation, and the
cost function to be optimized is unimodal. On the other hand,
some power must be used in the superimposed training se-
quence.

The scheme of MIMO channel estimation based on su-
perimposed training is illustrated in Fig. 2, whereM trans-
mission sensors andN reception sensors are considered. The
MIMO channel to be estimated is composed of subchannels
hij = [h1

ij , . . . , h
L
ij ]

T , with i = {1, . . . , N}, j = {1, . . . , M},
andL paths in each link. Using a spread spectrum technique,
a binary pilot sequencemj(k) = [mj(k), . . . , mj(k − L +
1)]T is added to information sequencesj(k) = [sj(k), . . . , sj(k−
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L + 1)]T at each transmission sensor. Therefore, the se-
quence to be transmitted becomestj(k) = sj(k)+mj(k), for
j = {1, . . . , M}. The pilot sequence is a periodic nonrandom
signal uncorrelated with the information signal.

Fig. 2. MIMO channel estimation based on superimposed
training.

At each symbol interval, each receiver inputyi(k), i =
{1, . . . , N}, can be expressed as:

yi(k) =
[

hT
i1, . . . ,h

T
iM

]







s1(k) + m1(k)
...

sM (k) + mM (k)






+ ηi(k).

(11)
In order to obtain the MIMO channel estimateswij = [w1

ij , . . . , w
L
ij ]

T ,
i = {1, . . . , N}, j = {1, . . . , M}, one can use the error sig-
nalsei(k),

ei(k) = m̃i(k) − yi(k), (12)

wherem̃i(k), i = {1, . . . , N}, are the received pilot signals
passed through the estimated channel:

m̃i(k) =
[

wT
i1, . . . ,w

T
iM

]







m1(k)
...

mM (k)






. (13)

According to the Wiener criterion, a cost functionJ =
[e2

i (k)] is defined as the expectation of the squared error for
each subchannel vector to be estimated as follows:

J (wci) = E
[

y2
i (k)

]

− wT
ciE
[

mc(k)mT
c (k)hci

]

−E
[

hT
cimc(k)mT

c (k)
]

wci

+wT
ciE
[

mc(k)mT
c (k)

]

wci, (14)

wherehci = [hT
i1, . . . ,h

T
iM ], wci = [wT

i1, . . . ,w
T
iM ] and

mc = [m1(k), . . . ,mM (k)]T . Since the insertion of the pilot
sequence into the signal to be transmitted is carried out by a
spread spectrum procedure, signalssj andmj are indepen-
dent. Then, if they are zero-mean sequences, the following
relations can be stated:

E
[

y2
i (k)

]

= σ2
yi

E
[

mc(k)mT
c (k)hci

]

=







pi1

...
piM






= pci

E
[

mc(k)mT
c (k)

]

=













R1 0 · · · 0

0 R2
. . .

...
...

. . .
. . . 0

0 · · · 0 RM













= Rc,

whereσ2
yi

is the power of receiver input signalyi; pci andRc

represent the cross-correlation and the autocorrelation of each
pilot sequencemc, respectively.

From (14) and relations above, one can write the Wiener
error surface in canonical form for the MIMO channel esti-
mation using a pilot sequence:

J (wci) = σ2
yi
− wT

cipci − pT
ciwci + wT

ciRcwci. (15)

Then, the Wiener solution applies, with the optimum esti-
mateswo

ci given by:

wo
ci = R−1

c pci, (16)

and as consequence, the minimum value of cost functionJ is
expressed as:

min
wci

J (wci) = σ2
yi
− pT

ciR
−1
c pci. (17)
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It can be observed that the optimum solution to this MIMO
channel estimation problem depends only on the pilot sequence.
The information signal has influence only on the minimum
value of the cost function, but not on the optimum solution
wo

ci.
In practice, the MIMO channel estimation task can be car-

ried out by conventional adaptive algorithms. Because of its
convergence properties, we employ the recursive least squares
(RLS) algorithm. The RLS algorithm is executed for each
reception sensori, where the input signal isyi. As can be
observed in (11), the subchannels related to sensori are ar-
ranged in a concatenated vector,

[

hT
i1, . . . ,h

T
iM

]

. Then, the
corresponding concatenated vector of subchannels estimates,
[

wT
i1, . . . ,w

T
iM

]

, can be obtained by using the RLS algo-
rithm.

5. SIMULATION RESULTS

In this section, we evaluate the proposed adaptive equalizer
for MIMO channels as an implementation of the Bayesian
(MAP-STE) equalizer through computer simulations. We con-
sider a communication system withM = 2 transmission sen-
sors andN = 2 reception sensors. The considered MIMO
channel hasL = 2 paths and is expressed below:

H0 =

[

1 0.5
0.8 0.6

]

; H1 =

[

0.6 1.2
0.3 0.9

]

. (18)

As exposed in Section 4, the RLS algorithm uses the su-
perimposed training sequence to perform the MIMO channel
estimation. Fig. 3 shows the mean squared error (MSE) of
channel estimation along the RLS iterations for three values
of information-to-training power ratio (ITR), namely 10 dB,
15 dB and 20 dB. Different ITR values are accomplished by
adjusting the training sequence power, since the information
sequence power level is fixed. The presented MSE is calcu-
lated as follows:

MSE =

∑L−1
l=0

∑M

j=1

∑N

i=1

∣

∣hl
i,j − wl

i,j

∣

∣

2

L · M · N
, (19)

and these curves represent the average of 5000 simulations.
The signal-to-noise power ratio (SNR) is 20 dB.

It can be observed that lower values of ITR provide bet-
ter channel estimates. The estimation task becomes easier
for lower ITR values, since they mean training signals with
higher power. On the other hand, it is noted that ITR does not
influence the speed of convergence.

In order to evaluate the proposed equalizer as an imple-
mentation of the MAP-STE, we present in Fig. 4 the bit error
rate (BER) curves of the MAP-STE and of three configura-
tions of the proposed equalizer. Such curves represent the
overall BER, i.e., they are related to the two transmitted se-
quences. The same equalization delay is considered for both
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Fig. 3. MSE of superimposed training-based channel estima-
tion for three values of ITR and SNR= 20 dB.

received signals:d1 = d2 = 1 symbol interval. Moreover, the
number of samples of the received vectors used as equalizer
inputs isNin = 2. The BER curve of the Wiener minimum
mean squared error (MMSE) linear equalizer is also illus-
trated in Fig. 4. In this case,Nin = 15 equalizer inputs were
considered. It is noted that the performance of the Wiener
equalizer is dramatically poor for the considered channel.
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Fig. 4. BER performance of MAP-STE, proposed equalizer,
and Wiener linear equalizer.

For MAP-STE, the available power is entirely used in the
information signal transmission, since it is the optimum re-
ceiver, where perfect channel information is assumed. Dif-
ferent configurations of the proposed equalizer are defined by
sharing the available transmission power between information
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and training signals, such that the desired ITR values be ob-
tained. Towards a fair comparison, the same amount of power
is available in all simulations.

It is expected that the proposed equalizer performs better
for lower values of ITR, since in such scenarios the quality
of channel estimates is better. This behavior is confirmed,
but it is more evident for high SNR values, where the equal-
ization process is more influenced by the quality of channel
estimates. In scenarios with low or moderate values of SNR,
the different configurations of the proposed equalizer in terms
of ITR present BER curves very close to that of MAP-STE.
It is worth noting that from an ITR about 15 dB, the pro-
posed equalizer practically attains the BER performance of
the MAP-STE, even for high SNR.

6. CONCLUSIONS

The implementation of the Bayesian equalizer for MIMO chan-
nels by means of radial basis function (RBF) neural networks
is addressed. It is known that RBF networks must be trained
to perform their tasks properly. In this context, it is common
to use a training sequence in supervised procedures of clus-
tering or channel estimation to define the RBF parameters.

In this work, we propose the use of a low-power super-
imposed pilot sequence to perform the MIMO channel esti-
mation and the subsequent adaptation of the RBF parameters.
This approach has the advantage to allow an uninterrupted in-
formation transmission and network training, both in parallel.
Moreover, the channel estimation problem corresponds to the
optimization of a unimodal cost function that leads to the op-
timal solution according to the Wiener criterion. Simulation
results reveal that the performance of the proposed equalizer
comes close to that of the Bayesian equalizer, even for low-
power superimposed pilot sequences.
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