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ABSTRACT

In this paper, a method of estimating the dimension of dy-
namical systems from a time series, using neural networks,
is examined. It is based (a) on the hypothesis that a member
of a time series can be optimally expressed as a deterministic
function of the d past series values (where d is the dimension
of the system), and (b) on the observation that neural net-
works’learning ability is improved rapidly when the appro-
priate amount of information is provided to a neural structure
which is as complex as needed. To estimate the dimension
of a dynamical system, neural networks are trained to learn
the component of the attractor expressed by a reconstructed
vector in a suitable phase space whose embedding dimension
m, has been estimated using the mutual information method.
More specifically, the information supplied to the networks
is represented by vectors consisting of the m past values of
the time series, where m varies from 1 to D + 2, D being
a pre-estimation for the maximum value of the embedding
dimension of the system. The current method proposes that
when m meets the dimension d of the dynamical system, the
neural model of the attractor remarkably improves its learn-
ing ability, minimizing locally the RMS error of the training
set. The logistic and the Henon map as well as the Lorenz
and the Rosler attractors expressed as systems of difference
equations, were examined to test the validity of the method.

Index Terms— chaotic systems, neural networks, embed-
ding dimension

1. INTRODUCTION AND REVIEW OF PREVIOUS
WORK

Chaotic analysis and neural networks’ modeling can be very
helpful tools in understanding both chaotic systems and neu-
ral networks. Much of the recent research work has been ori-
entated in the common field of chaos and neural networks.

Lapedes.A & Farber R. [1] constructed back propagation
neural networks to predict chaotic time series, using the ap-
propriate number of past system values to feed the input mod-
ule.
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SF Masri. AG Chassiakos and TK Caughey [2] have in-
vestigated the ability of back propagation networks with static
or dynamic neurons to learn non-linear dynamical systems.
Small changes of parameter values were allowed, while ex-
perimental measurements were used to provide the network
with the displacement and velocity values of the dynamical
system.

George J. Mpitsos and Robert M. Burton. Jr [3] stud-
ied in detail the effect of input signal dynamics to the neu-
ral network learning process, by modeling the logistic map
for A = 3.95, random noise, and sine functions, with back
propagation neural networks, while Ramazan Gencay [4] con-
structed feed forward networks to predict non linear time se-
ries produced by the Henon map application when noise is
present.

I-Cheng Yeh [5] constructed back propagation neural net-
works with added extended layer and auxiliary output neurons
to model the Henon and Ikeda maps. Kugiumztis D. [6] has
used neural networks for the attractor state space reconstruc-
tion in order to predict chaotic series. Renals Steve and Ro-
hwer Richard [7] investigated the dynamics of discrete neu-
ral networks consisting of N sigmoid nodes fully connected
via non-symmetric (in general) weight matrix. John F. Kolen
and Jordan B. Pollack [8] have experimented on simple back
propagation networks, to indicate sensitivity of convergence
on initial choice weights, learning rate, and momentum. Han
L.J Van der Maas Paul EM.J Verschure and Peter C.M Mole-
naar [9] have explored chaotic behavior of the sum of the
weights of a 3-cell autoassosiator, trained by the use of back
propagation and Hebian rules. Thomas B. Kepler, Sumeet
Datt, Robert B. Meyer and L.F Abbot [10] implemented a
four-node neural network circuit in order to explore possible
pathways to chaotic behavior. As shown period doubling, in-
termitency, and quasi-periodic pathways are all possible roots
to chaos for neural networks.

Paul FM.J Verschure [11] has taken the advantage of neu-
ral networks’ chaotic behavior to create a chaos-based learn-
ing algorithm.

Francois Chapeau-Blondeau and Gilbert Chauvet [12] stud-
ied the behavior of two and three node neural networks with
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full or partial delay.

K.Aixara,T.Takabe and M.Toyoda [13] proposed a neu-
ron model with chaotic dynamics, based on the Nagumo-Sato
model.

E. K. Blum and Xin Wang [14] explored the dynamics of
small neural networks of the sigmoidal type, using the cor-
responding difference equations, under the consideration of
time discreteness and synchronization.

G. Randons, H. G. Schuster and D. Werner [15] consid-
ered the iterational procedure of weight updating, with learn-
ing rate as the varying parameter. This resulted in fractal
measures (Cantor sets) for the invariant distributions of the
weights P(w).

2. THE PROPOSED DIMENSION ESTIMATION
ALGORITHM

The current work is based on two essential ideas, the former
concerning the mathematical formulation of a dynamical sys-
tem and the latter concerning some features of the learning
ability of neural networks.

The hypothesis concerning dynamical systems stands that
a member of a time series can be optimally expressed as a
function of the d past series values, where d is the dimension
of the system, obeying an underlying iterative mechanism. It
can be proven, that under certain constraints, a system of m
difference equations with m variables {1, 22, ..., 2z}, can
be replaced by one or more alternative systems of m equations
containing one variable’s m past values {1 1, T1,n—2, - - - ,
Z1,n—m}. Provided that any system of differential equations
can be transformed, within some accuracy level, to a system
of difference equations, there ought to be an underlying it-
erative mechanism governing any deterministic time series.
Taken’s theorem of phase space reconstruction [16] sets the
bounds of this relationship between members of time series,
arguing on the ability of the resulting dynamical system to de-
scribe dynamical properties of the original one. On the other
hand, if none of the above holds for a given time series, there
is no simple neural structure (as presented in the following)
to model it properly. In this case the method should be aban-
doned.

The second idea, concerning neural networks, focuses on
the observed property of neural networks to respond opti-
mally when the necessary amount of information is provided
to their input. However, it is well known that the determina-
tion of both the necessary information and the optimum level
of complexity it is not always possible. To overcome this limi-
tation, reliable and accurate models of the dynamical systems
under consideration are constructed, by using the appropri-
ate value of the embedding dimension, based on the fact, that
different neural models of the same attractor should result to
distinguishable network performances. When a neural net-
work is provided with the necessary information, its learning
ability increases rapidly. This is indicated by a great slope
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of the curve of RMS error of the training set, leading to its
local minimum. The information provided to the network is
represented by an m-dimensional vector consisting of m past
values of the time series. The parameter m - known as net-
work order - starts at the value m = 1 and gradually increases
with a step s = 1. Provided that a member of a time series
can be optimally expressed by the d past values, d being the
dimension of the system, it can be considered that the learn-
ing starting point of the network (the local minimum of the
RMS) appears when m takes a value m; which is very close
to d. The value m; reveals the dimension of the system if no
significant improvement occurs with further increase of m.
If further improvement of the networks’ performance can be
observed (correspondingly the slope of the RMS error with
respect to m is comparable to the previous slopes) m; may
not be a reliable estimation of the dimension. In this case
the investigation goes on until an m-value indicates the start-
ing point of a relative stabilization (probably slight improve-
ment or worsening) of the networks’ performance. It should
be pointed out that the networks are trained K -times (K = 10
in this work) and the average performance, represented by the
average of the RMS error of the training set, is considered.
Training the networks as many times as possible is necessary
since the resulting RMS error is sensitive to the initial values
of the weight vector [17].

Typical results of the application of the previously de-
scribed algorithm can be found in [18]. In that project, the
time delay used in the phase reconstruction process had been
selected in a random way and without applying any of the
available time delay estimation methods. In this work, an im-
provement of the above algorithm is the estimation of the time
delay by using the mutual information method [19][20]. More
specifically, the algorithm considers m networks as models of
a dynamical system instead of one parametric network with
varying number of input neurons. The networks are set to
an increasing order, with respect to m, and are trained. The
number of input neurons of the network that shows remark-
able learning ability, compared to the previous with lower m,
reveals the dimension of the system under consideration. In
a more mathematical form, the proposed algorithm includes
the following steps:

1. The appropriate time delay value is estimated by using
the mutual information method.

2. ForL=1to K

(a) Train m networks Ny, No, ..., N,,. The network
N has an input layer of j neurons fed with j past
values of the time series.

(b) For each network NN;, keep the resulting RM SL;
error of the training set after n epochs of training.

(c) Stop after K cycles.



3. Compute the average value, Av(RM.S), of RMSL;
with respect to L. Construct a diagram of the Av(RM S)
with respect to m. The dimension of the modelled sys-
tem is indicated by the last minimum of the Av(RM S)
which is reached through a significant negative slope of
the curve. In the next section the mechanism of select-
ing the right dimension is clarified through the study of
certain cases.

As pointed out earlier in this section, the number of cycles K
is kept to 10 and the maximum value of m is considered to be
m = D + 2, where D is a pre-estimated upper level of the
embedding dimension of the system.

3. EXPERIMENTAL RESULTS

The proposed algorithm for estimating the embedding dimen-
sion has been applied to a set of known chaotic systems which
in short, are the following:

The logistic map: The Logistic map is an iterative model
expressed by the equation

Tny1 = )\xn(l - mn) (D

It was studied for A = 3.93, a parameter value that produces
a member of the family which lies in the middle between
the interior and the boundary crises. The expected value of
the dominant Lyapunov exponent is 0.8 bits/iteration for this
member.

The Henon map: The Henon map is expressed by the
difference equation

Tni1 =1 —azl + Br,_1 2)

The above form of the system is equivalent to the original one
expressed in a two-dimensional phase space. The elimination
of the y,, variable by using the double recursion of x,, makes
the neural simulation of the system easier and more effective.
The parameter values are set to the values « = 1.4 and § =
0.3.

The Lorenz attractor: The Lorenz attractor is expressed
by a system of three differential equations, which in this case
is transformed to a system of three difference equations

Tpi1 = Tp+ At(Syn - Sl‘n)
Yntl = Yn + At(rmn — Yn — ann) (3)
Zn+1 = Zn+t At(xnyn - ﬁzn)

The Rossler attractor: As in the previous case, the orig-
inal system is transformed to the system of difference equa-
tions

Tna1 Ty + At(—xy — 2p)
Ynt1 = Yn + Ayn — Cmn) (€]
Zny1 = Zn + AUB A (20 —Y)2n)

The value of At is set to 0.06 while the parameter values
are « = 0.1, = 0.1 and v = 18. The resulting system
is different from the original one. The expected value of the
dominant Lyapunov exponent, estimated by the Wolf’s algo-
rithm [21], is between 0.01 — 0.015.

The parameters of training and testing the neural network
models are shown below:

e Type of network: backpropagation network with one
hidden layer

e Learning rate = 0.1
e Momentum m = 0.85
e Range of initial weight space [—0.1, +0.1]

e Data set used for training: 500 up to 100 pairs of input-
output vectors

e Epochs (for batch training): M = 10
e Maximum number of epochs: M., = 20000

The epoch is 1 to 15, because the results are same we put
one characteristic value epochs=10. Besides has happened
proof from 1 to 15 the recognition of the determinism. The
time series has 1000 data from each network The informa-
tion has direct affinity with probability to come over a fact,
as much as bigger is the firstly probability to happen a fact as
small scale as is the magnitude information that results by the
fact. The mutual average information is the formation that we
take of the section two or more sets (manifolds). This method
has object to release the data from each relation and not only
from linear or higher degree. For that reason we choose one
time delay in order the mutual average information that we
will take from the data before the time delay and the data af-
ter the time delay to be the least possible. This method is the
best, he only disadvantage is that needs too much data. The
optimumum time delay value used in the reconstruction stage
was estimated using the mutual information method and the
estimated value was equal to 7, = 10 for the logistic map,
7, = 13 for the Henon map, 74, = 11 and 74, = 74, = 10 for
the x,y and z components of the Lorentz map respectively,
and 7., = 23, 7y, = 26 for the x and y components of the
Rossler map. The experimental results for all the map types
presented above are shown in Tables 1-4. In those tables, the
parameter N the number of input neurons of the neural net-
work, while, the parameter RMS represents the mean square
error of the network training. The variation of the RMS er-
ror with the number of input neurons for the logistic and the
Henon map is shown in Figure 1, while, similar diagrams can
be constructed for the remaining chaotic systems.

Fron the above results it is clear that the proper embedding
dimension for the phase space reconstruction stage - this di-
mension is associated with the minimum RMS trainig error -
is equal to dy = 3 for the logistic map, dg = 2 for the Henon
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Fig. 1. The variation of the RMS training error with the number of input neurons for the logistic and the Henon map

Table 1. Results for the logistic map
N 1 2 3 4 5
RMS | 0.0229 | 0.0221 | 0.0109 | 0.0205 | 0.0203

Table 2. Results for the Henon map

N 1 2 3 4
RMS | 0.0959 | 0.0183 | 0.0980 | 0.0205
N 5 6 7
RMS | 0.0201 | 0.0287 | 0.0295

map, dr, = dry = 3,dr, = 2forthe X,Y and Z time series
of the Lorenz attractor, and d,, = d,, = 3,d,, = 4 for the
X.Y and Z time series of the Rossler attractor, in complete
accordance with the values found in the literature.

4. CONCLUSIONS AND FUTURE WORK

The objective of this research was the investigation of the
ability of artificial neural networks to estimate the proper em-
bedding dimension of chaotic dynamical systems using a pre-
estimated time delay value. The results showed that neural
networks can be used for this task, since the estimated em-
bedding dimension values are identical with those estimated
by using other methods. Future work includes the applica-
tion of this method to noisy time series emerging from known
chaotic systems or real time measurements to explore the way
it behaves and the accuracy of the results emerged from it.
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