
LINEAR DIMENSIONALITY REDUCTIONWITH GAUSIAN MIXTURE MODELS

Jose M. Leiva-Murillo and Antonio Artés-Rodrı́guez

Universidad Carlos III de Madrid
Dept. Signal Theory and Communications

Leganés (Madrid), Spain

ABSTRACT

In this paper, we explore the application of several information-
theoretic criteria to the problem of reducing the dimension in
pattern recognition. We consider the use of Gaussian mix-
ture models for estimating the distribution of the data. Three
algorithms are proposed for linear feature extraction by the
maximization of the mutual information, the likelihood or the
hypotheses test, respectively. The experiments show that the
proposed methods outperform the classical methods based on
parametric Gaussian models, and avoid the intense computa-
tional complexity of nonparametric kernel density estimators.

Index Terms— Information Theoretic Learning, Feature
Extraction, Pattern Recognition.

1. INTRODUCTION

The need of dimensionality reduction in classification pro-
blems has been studied from a learning theory point of view.
The Kolmogorov’s theorem, in a neural network context, sug-
gests that the higher the dimension of the data, the easier the
pattern separation [1]. However, the Vapnik’s bound from
the statistical learning theory establishes that the generaliza-
tion ability of classifiers gets worse as the rate between the
dimension of the data and the number of samples increases
[2]. This is why a proper dimension reduction is claimed to
be useful for diminishing the error probability of classifiers.
There are other reasons to reduce the dimension. First, the
computational cost of training the classifiers and using them
to classify new samples is reduced. Secondly, a projection
in a low dimension space helps us to visualize and interpret
the underlying structure of data. Finally, neurophysiological
studies on humans and animals reveal the fact that the brain
receives a compressed version of the data acquired by the sen-
sory system [3]. This fact suggests that a pattern recognition
process can be improved by a proper redundancy elimination
via dimension reduction.

The most direct way of reducing the dimension is feature
selection: a subset of the original features is selected for clas-
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sification. On the other hand, feature extraction performs a
transformation z = f(x), f : RD → Rd, with d ≤ D. In the
case that the transformation is characterized by a matrix, the
feature extraction is said to be linear, i.e.: z = WTx. It is
easy to note that a feature selection scheme can be described
by a linear feature extractor with a given projection matrix.

The choice of using linear or nonlinear feature extraction
is determined by the classifier used. If a linear classifier is
used, a non linear feature extractor is appropriate to unfold
the non linear patterns present in the data. If a nonlinear clas-
sifier is applied, a linear feature extractor may be utilized, on
condition that the subspace on which the data are projected
contains all the discriminative information. As an example of
the importance of choosing an appropriate linear transforma-
tion, a Mahalanobis distance can be learned so that the per-
formance of a K-nearest-neighbor (KNN) classifier is signifi-
cantly improved [4]. In this paper, we focus on linear feature
extraction.

Linear Discriminant Analysis (LDA) was the first statisti-
cal criterion for low rank linear separation, and it is still the
most popular supervised linear feature extractor [5]. LDA
tries to maximize the dispersion among classes while mini-
mizing the inner dispersion of each class, which is known as
Fisher criterion. LDA provides a closed, eigendecomposition-
based solution to the maximum likelihood criterion in the ho-
moscedastic case (the same covariance matrix is assumed for
each of the classes). Other methods have been proposed that
measure the distance among classes, via Chernoff and Bhat-
tacharrya distances [6] [7]. However, these methods assume
mono-modality and gaussianity of the data, so that these dis-
tances are easy to compute. On the other hand, classification
problems determined by nonlinear discrimination boundaries
are not successfully solved by these methods, so that other
criteria are to be considered instead of linear distances. The
need for extending LDA to more complex, multimodal dis-
tributions led to a method that makes use of homoscedastic
Gaussian mixture models to estimate the distribution of each
class [8].

Recently, a number of methods have been proposed that
make use of criteria as likelihood or mutual information to
learn the features to extract. These methods are commonly
claimed to belong to the novel framework of information theo-
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retic learning (ITL). Although information theory was born in
the forties, it has recently become popular in machine learn-
ing and neural processing systems. It provides a set of tools
for analyzing the statistical dependence among random vari-
ables. This is useful in dimensionality reduction because it
allows us to measure the relevance of the features extracted
with respect to the classes, as well as the redundancy among
features themselves. Due to their flexibility, non-parametric
kernel density estimators (KDE) are frequently used for mod-
eling the distribution of the data, to estimate the likelihood
[9] or an alternative measure of mutual information between
features and classes [10] [11], among other proposals.

In this paper we propose the use of semiparametric prob-
ability density function (PDF) estimation based on Gaussian
mixture models (GMM) for estimating and maximazing sev-
eral information theoretic criteria. These methods avoid some
of the disadvantages of working with KDE, like their compu-
tational complexity or the problem of the bandwidth selection
for the kernel. In addition to the usage of these models for fea-
ture extraction, we also evaluate the performance of a gener-
ative classifier based on these models. Thus, a measure of the
probability that a sample belongs to each class is provided. In
the next Section, Gaussian mixture models are introduced, as
well as the model selection criteria for determining the num-
ber of mixtures to be used. In Section 2, several criteria are
described as well as the procedures for their maximization.
Some experiments are carried in Section 4 to compare the per-
formance of the methods proposed. The paper finishes with
some conclusions and remarks in Section 5.

2. GAUSSIAN MIXTURE MODELS AND MODEL
SELECTION

A Gaussian mixture model is a PDF estimator given by the
expression:

p̂(x) =
K∑

k=1

αkG(x|mk,Ck)

where K is the number of mixture components and m k and
Ck are, respectively, the mean and the covariance matrix of
the k-th Gaussian component. Each αk is a weight parame-
ter, so that

∑
k αk = 1. The Expectation-Maximization algo-

rithm performs a search of the parameters {αk,mk,Ck}K
k=1

by maximizing the likelihood of the data given the model.
The number of mixtures K must be carefully chosen for

each class as well as the whole dataset. The higher the value
of K , the higher the likelihood of the GMM obtained. How-
ever, a high value of K leads to overfitted models. A widely
accepted criterion to apply the Occam’s razor and so to pe-
nalize the complexity of the model is Akaike information cri-
terion (AIC). Akaike’s criterion chooses the model with the
highest value of the cost given by:

AIC = 2 logL− 2T (1)

where L is the likelihood and T is the number of free pa-
rameters of the model. In the case of GMM, the set of pa-
rameters consists of a series of K scalars αk, K mean vec-
tors µk and K covariance matrices Ck. Because the dimen-
sion of x is D and each covariance matrix has D(D + 1)/2
unique elements, the total number of parameters in the model
is T = K(D + 1)(D + 2)/2. The expression in (1) can be
rewritten as:

AIC = 2 logL− K(D + 1)(D + 2)

We use this criterion for establishing the number of mixtures
K in each of the models used throughout the paper.

3. CRITERIA FOR SUPERVISED FEATURE
EXTRACTION

A pattern recognition problem is defined by a set of samples
from a multivariate variable x, each of which comes with a
sample of an auxiliary discrete variable y ∈ {c1, c2, . . . , cL}
that indicates the class the sample belongs to. Linear fea-
ture extraction consists of finding the D × d projection ma-
trix W such that the new variable z = WTx belongs to a
d-dimensional space. Let us denote as x-space the original
D-dimensional feature space and z-space the reduced one. In
a pattern recognition context, the transformationmust provide
a classification performance as good as possible when carried
out on z.

In this Section, different information-theoretic criteria for
feature extraction are described. The methodology for the
maximization of these criteria is also provided, once the dis-
tribution of the data is modeled by GMMs. These criteria are
mutual information, likelihood and hypothesis test.

3.1. Mutual Information

Mutual information (MI) is, according to Shannon’s Informa-
tion Theory, a measure of the statistical dependence among
several random variables [12]. The MI between a continuous,
multidimensional variable z and a discrete one y may be de-
scribed in terms of entropy as:

I(z, y) = h(z) − h(z|y) = h(z) −
L∑

l=1

P (cl)h(z|cl)

where y is the auxiliary variable indicating the class of each
sample of data. The entropies involved are given by the ex-
pressions:

h(z) = −
∫

p(z) log p(z)dz (2)

h(z|cl) = −
∫

p(z|cl) log p(z|cl)dz (3)
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Since p(z) and each p(z|cl) are unknown we model them
by the GMMs p̂(z) and p̂(z|cl). The models have been ob-
tained in the x-space with parameters {αk,mk,Ck}. We need
to relate them to the ones in the z-space {α′

k,m′
k,C′

k}. The
parameters obtained in the x-space hold the maximum like-
lihood property, but there is not a way of relating the like-
lihood in both the x and z-spaces. Hence, we take the rea-
sonable transformations of the parameters α ′

k = αk, m′
k =

WTmk and C′
k = WT CkW, because these transforma-

tions do provide maximum likelihood parameters for individ-
ual Gaussians.

Even for a simple distribution model as a GMM, the an-
alytical computation of h(z) is intractable unless the number
of mixtures is one. Instead, we propose a sampled estima-
tion. Given the transformed dataset Z = {z1, . . . , zN}, with
zi = WT xi, this estimation has the form:

ĥ(Z) = − 1
N

N∑

i=1

log p̂(zi)

It is easy to show that E{ĥ − h} = DKL(p, p̂), being
DKL the Kullback-Leibler divergence. This means that there
is a systematic positive bias in the estimation of h. The ma-
ximum likelihood procedure followed by the EM algorithm
provides us (ignoring local minima problems) with the min-
imum entropy solution, i.e. the p̂ that, among all the GMMs
with the same order, minimizes DKL(p, p̂). The gradient of
this entropy w.r.t. the projection matrix W, in terms of the
derivatives of the Gaussians involved, is given by:

∇Wĥ(z) = − 1
N

∑

i

1
p̂(zi)

∑

k

αk∇WG(zi|m′
k,C′

k)

where the gradient of each Gaussian is:

∇WG(zi|m′
k,C′

k) = G(zi|m′
k,C′

k)×

×
[(

C′−1
k (zi − m′

k)(zi − m′
k)T − I

)
C′−1

k WT Ck−

−C′−1
k (zi − m′

k)(xi − mk)T
]

(4)

The derivative of the estimated MI is given by a linear
combination of derivatives of the entropies, so that we can
perform a gradient ascent procedure for the optimization of
the cost:

Ŵ = argmax
W

Î(Z, Y )

= argmax
W

[
ĥ(Z) −

L∑

l=1

P (cl)ĥ(Z|cl)
]

3.2. Likelihood

The Informative Discriminant Analysis (IDA) has been pro-
posed for linear feature extraction, by using kernel density
estimation (KDE) to model the distribution of the data [9].

This method searches for the transformation z = WT x that
maximizes the likelihood:

log L(Y |Z) =
∑

i

log p̂(yi|zi) (5)

The conditional density is estimated as:

p̂(yi|zi) =
p̂(zi, yi)∑
l p̂(zi, cl)

=
P (yi)p̂(zi|yi)∑
l P (cl)p̂(zi, cl)

where each p̂(zi|cl) is modeled by a GMM, and the P (cl)
is the a-priori probability of class cl, which can be empiri-
cally estimated as P (cl) = nl/N , i.e. the fraction of training
samples belonging to that class. The method for feature ex-
traction consists in finding the transformation matrixW that
maximizes the likelihood in (5), i.e.:

Ŵ = argmax
W

∑

i

log
P (yi)p̂(zi|yi)∑
l P (cl)p̂(zi, cl)

= argmax
W

∑

i

[log p̂(zi, yi) − log p̂(zi)]
(6)

The proposed optimization of the cost is again given by
the derivatives of the Gaussians as explained in (4).

3.3. Likelihood test

A classification problem can be stated in terms of the deci-
sion theory. The choice of the class a sample belongs to may
be interpreted as the election of one of the hypotheses about
the origin of the sample. This methodology has been widely
utilized in digital communications, threat detection or clinical
diagnosis, among others [13].

In a binary decision problem onemust choose between the
hypothesesH0 andH1. The decision is given by the ratio be-
tween the likelihood of the observation given the hypothesis,
i.e. by the criterion:

p(z|H1)
p(z|H0)

H0
≶
H1

λ

where λ is the threshold established by some criterion as Ney-
mann-Pearson’s or Bayes’ [14]. The Neymann-Pearson’s lem-
ma states that the test is optimal in the sense that no other cri-
terion can simultaneously reduce both kinds of errors (false
alarms and miss detections in the binary case), if both densi-
ties p(z|H0) y p(z|H1) are known [12].

Since z is obtained by the projection z = WTx, a rea-
sonable criterion can be to search for theW that achieves the
maximum of the test between p(z|H1) and p(z|H0) for the
training data:

LT (z, y) =
p(z|H1)
p(z|H0)

where, in the multiclass case, H1 is the hypothesis that z be-
longs to the class given by its label, andH0 is the hypothesis
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that it belongs to any of the other classes. Thus, a one-versus-
the-rest learning scheme is applied. The test must be carried
out from empirical likelihoods, since the densities p(z|H0)
and p(z|H1) must be estimated. Again, GMMs are used to
model the distributions. The test for the whole set of data can
be rewritten as:

log LT (Z, Y ) = log
∏

i p̂(zi|yi)∏
i p̂(zi|ȳi)

Thereby the cost function to maximize is:

Ŵ = arg max
W

∑

i

[
log p̂(zi|yi) − log p̂(zi|ȳi)

]
(7)

The hypothesis of the sample belonging to a given class is
modeled by:

p̂(z|c̄l) =
∑

j #=l

πj,lp̂(z|cj)

where πj,l is a prior that indicates the a-priori probability that
a sample belongs to cj subject to that it does not belong to
cl. This prior can be empirically determined from the number
of training samples of each class, or by any other a-priori in-
formation about the data. In the former case, we would have:
πj,l = Nj

N−Nl
. The expression (7) can be rewritten as:

Ŵ = argmax
W

∑

i

[
log p̂(zi|yi) − log

∑

cl #=yi

πj,lp̂(zi|cl)
]

Again, this cost is derivable as in the previous methods,
so that it can be optimized by a gradient ascent procedure.
Although a stochastic gradient optimization can be used, in
the following experiments a batch-type procedure has been
followed.

The complexity of the methods proposed is with O(N ·
L · K), being K the maximum number of Gaussians used to
build each model. This complexity is linear with N , being
an advance with respect to methods based on KDE models,
which have a complexityO(N 2).

4. EXPERIMENTS

In this Section, we evaluate the performance of the methods
proposed and compare them to other feature extraction me-
thods. Also, we evaluate the usage of the GMMs for genera-
tive classification

4.1. Datasets and Feature Extraction Methods

The feature extractors whose performance is evaluated in this
Section are the ones described in Section 3: the maximization
of the mutual information (MMI), the maximization of the
likelihood (ML) and the maximization of the likelihood test
(LT). For comparison, we also evaluate the following feature
extraction methods:

1. Principal Component Analysis (PCA) is an unsuper-
vised method that searches for the most powerful com-
ponents of the data, and projects them along such di-
rections. It does not take into account the class of the
samples.

2. Linear Discriminant Analysis (LDA) looks for the most
discriminative projections in terms of first and second
order statistics.

3. MaximumQuadraticMutual Information (MQMI), pro-
posed byK. Torkkola [11], is an ITLmethod that makes
use of KDE to model the densities p(z|cl). Shannon’s
MI is defined in terms of Kullback-Leibler (KL) diver-
gence, which is analytically intractable unless the den-
sities are modeled by simple parametric models. In-
stead of KL’s, the divergence used in MQMI is a qua-
dratic distance that gives place to the pseudo-MI:

IQ(z, y) =
∑

cl

∫
[p(z, cl) − p(z)P (cl)]2dz

The datasets used in the experiments are from the public
UCI repository [15]. They show different dimensionality de-
grees and numbers of classes, in order to evaluate the methods
in a variety of pattern recognition scenarios. Their character-
istics are displayed in Table 4.1. Two of the datasets, Opt-
digits and Isolet, have been previously applied a PCA-based
dimension reduction to 40 components, since otherwise sin-
gular covariance matrices may appear in the GMMs when ap-
plying the EM algorithm.

Data Train Test Dimension Classes
Landsat 4435 2000 36 6
Optdigits 3823 1797 64 (40) 10
Letter 16000 4000 16 26
Isolet 6238 1559 617 (40) 26

Table 1. Characteristics of the evaluated datasets

4.2. Classifiers

Two classifiers have been used to measure the performance of
the methods described. First, a pure discriminative, non para-
metric K-Nearest-Neighbors (with K = 1, 1NN) classifier
has been used. Secondly, we propose a generative decision
rule given by the GMMs in the z-space. In this case, the clas-
sification rule is:

ŷi = arg max
l

p̂(zi|cl)

This criterion has the advantage that it provides us with (es-
timated) probability values. In the following, we refer to this
classification rule as Gaussian mixture classification (GMC).
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4.3. Results

In the Tables 2 to 5, the classification results of the methods
proposed are displayed for the datasets described in Table
4.1. Several degrees of dimensionality reduction are evalu-
ated, from 1 to 5 projections obtained. The AIC has chosen
a number of mixtures for each of the classes between 2 and 3
(Landsat), 2 to 4 (Optdigits), 2 to 5 (Letter) and 1 to 5 (Isolet)
. The number of mixtures for the whole set of samples is 11,
26, 12 and 21, respectively for each dataset.

The results highlight the superiority of the GMM-based
ITL methods proposed in the majority of the datasets and re-
duction degrees considered. This superiority is specially re-
markable in the datasets Optdigits and Isolet, which suggests
that these pattern recognition problems are characterized by
strongly non linear classification boundaries. Among the me-
thods proposed, the maximization of the likelihood is the one
that provides the best results.

The superiority of the GMC classifier with respect to the
1NN must be stressed. Although 1NN is not a state-of-the-art
classifier, the fact that GMC performs better in all the cases
suggests the convenience of its usage, specially in those cases
in which a probability measure or soft output is required.
However, in the classification experiments on the raw data,
i.e. without dimension reduction, GMC performs worse than
1NN in some cases, due to the overfitting of GMMs when the
dimension is high.

# Comps. 1 2 3 4 5
PCA/1NN 40.80 78.40 83.80 84.70 85.80
PCA/GMC 50.25 81.45 84.15 85.60 87.65
LDA/1NN 47.85 71.35 82.00 83.90 82.50
LDA/GMC 54.85 77.95 85.40 86.10 87.20
MQMI/1NN 52.05 69.50 83.65 83.20 84.50
MQMI/GMC 60.45 75.25 84.15 85.60 87.65
MMI/1NN 65.15 79.80 83.80 84.70 85.85
MMI/GMC 72.50 83.40 85.95 87.25 87.95
ML/1NN 64.50 78.45 82.85 84.95 84.20
ML/GMC 72.90 83.80 85.70 87.10 87.30
LT/1NN 55.80 74.85 78.85 81.10 83.00
LT/GMC 63.85 78.80 83.20 84.40 85.40
Raw Data/1NN 89.45
Raw Data/GMC 86.15

Table 2. Landsat Dataset.

In Figure 1 a scatterplot of the features extracted from the
Wine dataset is displayed, when two projections are obtained.
This dataset contains 178 samples, 13 dimensions and 3 clas-
ses. We visualize the results obtained by the three methods
proposed and LDA, for comparison. Because of the simplic-
ity of this classification problem, all the methods successfully
separate the samples belonging to each class in the z-space.

# Comps. 1 2 3 4 5
PCA/1NN 28.32 52.81 71.68 78.80 87.81
PCA/GMC 35.84 60.16 75.57 81.69 89.15
LDA/1NN 32.22 59.04 77.30 85.31 89.87
LDA/GMC 41.68 64.22 80.97 87.59 90.87
MQMI/1NN 34.06 59.15 76.96 78.80 87.81
MQMI/GMC 44.35 65.66 80.63 81.69 89.15
MMI/1NN 37.28 66.94 82.92 90.09 91.82
MMI/GMC 47.08 73.62 85.53 90.48 92.32
ML/1NN 37.90 67.84 83.58 90.32 93.27
ML/GMC 46.52 73.62 86.37 91.10 94.16
LT/1NN 33.28 55.26 73.85 86.76 91.26
LT/GMC 42.74 64.05 78.69 87.98 92.10
Raw Data/1NN 95.66
Raw Data/GMC 96.88

Table 3. Optdigits Dataset.

# Comps. 1 2 3 4 5
PCA/1NN 09.05 17.15 35.68 56.15 66.50
PCA/GMC 05.85 18.48 32.70 49.43 59.23
LDA/1NN 17.37 35.90 48.58 63.38 69.73
LDA/GMC 18.25 41.98 52.73 64.00 69.27
MQMI/1NN 17.40 36.30 49.40 56.15 66.50
MQMI/GMC 18.02 42.13 52.73 49.43 59.23
MMI/1NN 18.10 45.82 55.75 67.20 74.72
MMI/GMC 21.40 45.45 56.43 66.87 73.55
ML/1NN 16.58 42.08 58.45 71.35 80.00
ML/GMC 20.50 46.35 59.92 69.17 76.08
LT/1NN 18.47 35.48 48.93 61.22 76.15
LT/GMC 21.98 39.05 53.77 62.10 71.92
Raw Data/1NN 95.65
Raw Data/GMC 85.45

Table 4. Letter Dataset.

# Comps. 1 2 3 4 5
PCA/1NN 16.23 24.82 33.55 48.49 59.33
PCA/GMC 20.40 32.20 42.21 58.18 66.97
LDA/1NN 19.82 40.28 55.93 65.62 69.34
LDA/GMC 27.33 49.01 66.07 72.80 76.20
MQMI/1NN 21.55 38.87 58.56 48.49 59.33
MQMI/GMC 25.40 48.30 67.80 58.18 66.97
MMI/1NN 23.41 51.38 67.16 77.74 80.76
MMI/GMC 30.60 61.71 75.05 82.75 87.04
ML/1NN 22.58 52.92 69.85 77.81 83.19
ML/GMC 31.24 62.60 79.41 84.61 88.33
LT/1NN 23.03 41.76 57.67 66.07 74.15
LT/GMC 31.43 50.55 65.68 73.70 80.31
Raw Data/1NN 85.31
Raw Data/GMC 90.76

Table 5. Isolet Dataset.

52



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
LDA

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
MMI

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
ML

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
LT

Fig. 1. Scatter plot of the three-class dataset Wine for several
feature extraction methods.

5. CONCLUSIONS

We have presented three linear feature extraction methods for
pattern recognition that are inspired in ITL criteria, involving
concepts from information theory and decision theory. The
classification experiments have revealed their better perfor-
mance with respect to other classical methods as PCA or LDA
and even with respect to another ITL method as Torkkola’s
MQMI.

The methods proposed are based on the previous model-
ing of the distribution of the data. To do so, Gaussian mix-
ture models have been used. The problem of choosing the
complexity of the models (i.e. the number of mixtures) has
been solved by the application of Akaike’s information crite-
rion. In a set of experiments not included in the paper, an-
other model selection criterion as Bayesian information cri-
terion (BIC) was used, but led to less complex models that
provided poor performance results. However, the theorectical
study of model-selection criteria for GMM and the proposed
ITL methods can be a promising area of research.

The suitability of AIC and the procedure for choosing the
parameters in the z-space from the ones in the original x-space
is demonstrated by two facts. First, the ability of the proposed
feature extraction methods for obtaining the relevant infor-
mation. Secondly, the good classification performance of the
proposed GMM-based generative classifier. The choice of the
best dimension reduction, i.e. the dimension of the manifold
that contains the discriminative information in each classifi-
cation problem represents an open problem that could be ad-
dressed in a future wok by the interpretation of the values of
the likelihood and mutual information.
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