
LEARNING FOR CROSS-LAYER OPTIMIZATION

Fangwen Fu, and Mihaela van der Schaar

Multimedia Communications and Systems Lab, Electrical Engineering Department,
University of California Los Angeles (UCLA)

{fwfu, mihaela}@ee.ucla.edu

ABSTRACT

Cross-layer optimization solutions have been proposed in
recent years to improve the performance of network users
operating in a time-varying, error-prone wireless
environment. However, these solutions often rely on ad-hoc
optimization approaches with known environmental
dynamics experienced at various layers by a user and violate
the layered network architecture of the protocol stack. This
paper presents a new theoretic foundation for cross-layer
optimization, which allows each layer to autonomously
learn the environmental dynamics, while maximizing the
utility of the wireless user by optimally determining what
information needs to be exchanged among layers. Hence,
this cross-layer framework does not change the current
layered architecture. The experimental results demonstrate
that the proposed layered learning framework achieves near-
optimal performance.

Index Terms— Cross-layer optimization, layered
MDP, learning, information exchange, environmental
dynamics.

1. INTRODUCTION

The Open Systems Interconnection (OSI) model [1] is a
layered, abstract organization of the various
communications and computer networks protocols. To
optimize the different protocol parameters from different
layers, the wireless stations (WSTAs) need to consider the
dynamic wireless network “environment” resulting from the
repeated interaction with other stations, the experienced
time-varying channel conditions and, for delay-sensitive
applications, the time-varying source characteristics.
Moreover, it should be noted that a WSTA needs to jointly
optimize the selected protocol parameters within each layer
such that the utility of the WSTA is maximized. The joint
optimization of the transmission strategies at the various
layers is referred to as cross-layer design [2][3]. Recently,
various cross-layer design methods have been proposed in
order to jointly adapt the transmission strategies at each
layer of the OSI stack to the rapidly varying environment
and often scarce network resources by assuming that the
environmental dynamics are known [4][7].

The advantage of the layered architecture is that the
designer or implementer of the protocol or algorithm at a

particular layer can focus on that layer without worrying
about the rest of stack [3]. However, most existing cross-
layer design solutions advocate improving the system utility
by violating the current layered architecture of wireless
networks. These cross-layer interactions create the
dependencies among the layers which will affect not only
the concerned layer but also other layers. Hence, such
solutions are undesirable because they require a complete
redesign of current networks and protocols and thus, require
a high implementation cost [3].

Furthermore, most existing cross-layer design solutions
aim at maximizing the WSTA’s utility by jointly adapting
the transmission strategies across multiple layers to the
known environmental dynamics [4][5]. These solutions,
however, neglect that the environmental dynamics are
generally unknown and the off-line cross-layer optimization
will lead to worse performance.

Unlike the previous works that jointly optimize the
cross-layer strategies in a centralized way, we propose a
layered MDP solution to drive the cross-layer optimization.
In this layered MDP framework, each layer makes its
transmission decision (i.e. selects the transmission
strategies, e.g. packet scheduling in the application (APP)
layer, retransmission in the MAC layer and modulation
selection in the physical (PHY) layer) in an autonomous
manner, by considering the dynamics experienced at that
layer as well as the information available from other layers.
Importantly, using this layered optimization framework, we
do not change the current layered architecture of the
protocol stack. Moreover, the current algorithms and
protocols currently implemented at each layer also remain
unaffected, as the proposed framework requires only the
exchange of information across layers and the optimization
of available parameters at each layer. To exchange
information across multiple layers, we define a message
exchange mechanism in which the content of the message
captures the performed transmission strategies and
experienced dynamics at each layer.

To capture the unknown environment dynamics, we
propose a layered learning algorithm to allow each layer to
autonomously update its own transmission strategies based
on the experienced environment dynamics.

The rest of the paper is organized as follows. Section 2
discusses the problem settings for the cross-layer

69

optimization and formulates the cross-layer design as an
MDP problem. Section 3 presents a layered value iteration
algorithm for optimally solving the layered MDP. Section 4
discusses the on-line learning based on the layered MDP
framework. Section 5 gives the simulations results. The
paper concludes in Section 6.

2. CROSS-LAYER PROBLEM STATEMENT

We consider one WSTA transmitting its time-varying traffic
to another WSTA (e.g. base station) over a wireless network
(e.g. wireless LAN, cellular network, etc.). We also assume
that there are L participating layers1 in the protocol stack.
Each layer is indexed { }1, ...,l L∈ with layer 1
corresponding to the lowest participating layer (e.g. PHY
layer) and layer L corresponding to the highest
participating layer (e.g. APP layer). The WSTA interacts
with the dynamic environment at various layers in order to
maximize the application utility.
2.1 States

In this paper, the state of the layers is defined such that
future transmission strategies can be determined
independent of the past history given the current state. In
other words, the state encapsulates all the past information
required for future strategy adaptation. We refer to this type
of state as Markovian state. When considering the layered
architecture of current networks, we are able to define a
state l ls ∈ S for each layer l . Then, the state of the entire
WSTA is denoted by ∈s S , with

1

L
ll=

= ∏ SS .

2.2 Actions
 In a layered architecture, a WSTA takes different

transmission actions in each state of each layer. The
transmission actions can be classified into two types at each
layer l : an external action is performed to determine the
state transition, and an internal action is performed to
determine the service provided to the upper layers for the
packet(s) transmission.

The external actions at each layer l are denoted by
l la ∈ A , where lA is the set of the possible external actions

available at layer l . The external actions for the WSTA in
all the layers are denoted by []1, ..., La a= ∈a A , where

1

L
ll=

= ∏ AA . The internal actions are denoted by l lb ∈ B ,
where lB is the set of the possible internal actions available
at layer l . The internal actions are performed by the WSTA
to efficiently utilize the wireless medium given the network
resource allocation and its own resource budget (e.g. power
constraint), by providing the QoS required by the supported
applications. The internal actions for the WSTA across all
the layers are denoted by []1, ..., Lb b= ∈b B , where

1

L
ll=

= ∏ BB . Hence, the action at layer l is the

1 If one layer does not participate in the cross-layer design, it can simply be
omitted. Hence, we consider here only the L participating layers.

aggregation of external and internal actions, denoted by
l l l la bξ = ∈⎡ ⎤⎢ ⎥⎣ ⎦ X , where l l l= ×A BX . The joint action

of the WSTA is denoted by []1 1
, ...,

L
L ll

ξ ξ
=

= ∈ ∏ξ X .
The external actions are performed to drive the state

transition. In general, because states are Markovian, the
state transition of the WSTA only depends on the current
state s , the current performed actions, and the
environmental dynamics. The corresponding transition
probability is denoted by ()| ,p ′s s ξ .

Due to the layered architecture of the wireless network,
the state transition probability can be further decomposed.
Using Bayes rule, the transition probability can be rewritten
as

 () ()1 -1
1

| , | , ,
L

l l
l

p p s →
=

′ ′ ′= ∏s s s sξ ξ (1)

where []1 1, ...,l ls s→′ ′ ′=s .
In this paper, based on the actions we mentioned before,

the transition probability can be decomposed as

() () ()
1

1 -1 1 -1
1

| , | , , | , , ,
L

l l l l L L L
l

p p s s a p s a
−

→ →
=

′ ′ ′ ′ ′= ∏s s s s s bξ (2)

This decomposition is due to the layered network
architecture and enables us to develop a layered MDP
framework, which will be presented in Section 3.
2.3 Utility function

The utility gain obtained in layer L is based on the
states and internal actions at each layer and it is denoted by
(),g s b . The transmission cost at layer l represents the cost

of performing both the external and internal actions, e.g. the
amount of power allocated to determine the channel
conditions or the tax (tokens, money) spent for consuming
wireless resources. In general, the transmission cost of
performing the external (internal) action at layer l is
denoted by (),l l lc s a ((),l l ld s b), which is a function of
the external (internal) action and the state of layer l . For
illustration, we assume that the reward is defined as

 () () () ()
1 1

, , , ,
L L

a b
l l l l l l l l

l l

R g c s a d s bλ λ
= =

= − −∑ ∑s s bξ (3)

where a
lλ (b

lλ) is a external (internal) Lagrangian multiplier
in layer l , determined by the WSTA to trade off the utility
and transmission cost. We assume that the Lagrangian
multipliers a

lλ and b
lλ are known. The optimal Lagrangian

multipliers depend on the available resource budget and can
be obtained as in [6]. The reward in Eq. (3) can be further
decomposed into two parts: one is the internal reward,
which depends on the internal actions, and the other is the
external reward, which depends on the external actions. The
internal reward is

 () () ()
1

, , ,
L

b
in l l l l

l

R g d s bλ
=

= − ∑s b s b , (4)

and the external reward is

70

 () ()
1

, ,
L

a
ex l l l l

l

R c s aλ
=

= −∑s a . (5)

Hence, the reward is in exR R R= + .
2.4 Foresighted decision making

As described in Section 2.2, the state transition at each
layer is controlled by the external actions. For simplicity,
we assume that the state transition in each layer is
synchronized and operates at the same time scale, such that
the transition can be discretized into stages during which the
WSTA has constant state and performs static actions. The
length of the stage can be determined based on how fast the
environment changes. We use a superscript k to denote
stage k . Hence, the state of the WSTA at stage k ∈ is
denoted by ks with each element kls being the state of layer
l ; similarly, the joint action performed by the WSTA at
state k is kξ with each element [],k k k

l l la bξ = . The state
transition probability is given by Eq. (2) and the stage
reward is given by Eq. (3).

Unlike the tradition cross-layer adaptation that focuses
on the myopic (i.e. immediate) utility, in the proposed cross-
layer framework, the goal is to find the optimal internal and
external actions at each stage such that a cumulative
function of the rewards is maximized. We refer to this
decision process as the foresighted cross-layer decision. By
maximizing the cumulative reward, the WSTA is able to
take into account the impact of the current actions on the
future reward.

Specifically, we assume that the WSTA will maximize
the discounted accumulative reward, which is defined as

 () ()0

0

, |k kk

k

Rγ
∞

=

∑ s sξ (6)

where γ is a discounted rate with 0 1γ≤ < and 0s is the
initial state. Unlike the formulation in [6], where the time-
average reward is considered, we use the discounted
accumulated reward with higher weight on the current
reward. The reasons for this are as follows: (i) for delay-
sensitive applications, the data needs to be sent out as soon
as possible to avoid expiration, and (ii) due to the
unexpected environmental dynamics in the future, the
WSTA may care more about the immediate reward. Hence,
this needs to be considered when determining the values of
γ for a specific cross-layer problem

3. LAYERED MDP FORMULATION

The internal and external actions need to be jointly
optimized in order to determine the optimal cross-layer
performance. Hence, information exchanges between layers
are required. Existing cross-layer optimization frameworks
require a central controller to decide the parameter
configuration assuming that the complete information from
all the layers is available to the central controller [7]. The
foresighted cross-layer optimization can be formulated as an
MDP and solved using value iteration [8]. However, the

problem structure discussed in Section 2 enables us to
decompose the MDP into a layered MDP which is defined
as follows:
Definition (Layered MDP with information exchange)
The layered MDP model with information exchange is
given by the tuple

{ } { } { }1
, 1 , 11 1 2

, , , , , , ,L LL
l l l l ll l l

p R γ−
+ −= = =

= Θ ΘM L S X , where
• { }1, ...,L=L is a set of L layers, each of which

takes the internal and external actions individually.
• S is a finite set of states, each element ∈s S of which

contains []1, , Ls s .
• lX is a finite set of actions available to layer l , each

element l lξ ∈ X of which contains the external and
internal actions, i.e. [],l l la bξ = .

• , 1l l+Θ is the message set sent by layer l to its upper
layer 1l + , where , 1 , 1l l l lθ + +∈ Θ represents a message
sent by layer l to its upper layer 1l + (i.e. upward
message).

• , 1l l−Θ is the message set sent by layer l to its lower
layer 1l − , and , 1 , 1l l l lθ − −∈ Θ represents a message
sent by layer l to its lower layer 1l − (i.e. downward
message).

• p is the transition probability function. ()| ,p ′s s ξ is
the probability of moving from state ∈s S to the
state ′ ∈s S when layer l ∈ L performs action lξ .
We assume that the transition model is stationary and
independent of the stage (i.e. time).

•
1

:
L

ll
R

=
×∏ XS is the system stage reward

function which has the form of (),R s ξ , i.e. the reward
is determined by the state and actions in each layer.

• γ is the discounted factor.
The framework of the layered MDP with information

exchange for the foresighted cross-layer optimization
problem is illustrated in Figure 1. From this figure, we
observe that the layer optimizer is not required to know
other layers’ state space, action space and dynamics models.

Upward message: At the state ks , by deploying the
internal actions, the WSTA can determine for each layer (i)
the probability of the packet being successfully received at
the destination; (ii) the amount of time it takes to transmit
on average; and (iii) the cost associated with its
transmission. The transmission result of whether a packet is
successfully received, is represented by the average packet
loss ratio (PLR) at layer l at stage k , which is denoted by

()1 1,k k k
l l lε → →s b where []1 1 , ...,

k k k
l ls s→ =s and

[]1 1 , ...,k k k
l lb b→ =b . The average amount of time spent on

transmitting one packet at layer l at stage k is denoted by
()1 1,k k k

l l lt → →s b . The aggregated transmission cost incurred

71

by performing internal actions at layer l is defined by
() ()1 1 1

, ,
lk k k b k k

l l l ll l ll
f d s bλ ′→ → ′ ′ ′′=

= ∑s b .

To compute the internal reward function (),k k
inR s b ,

layer L has to know the packet loss probability, the average
amount of time for packet transmission and the transmission
cost provided from the lower layers in stage k . We can
define a message which captures this information from
lower layers. This message is the QoS at layer l which is
defined as a three-tuple [], ,

Tk k k k
l l l lZ t fε= . The QoS at layer

l represents the service layer l provides to its upper layer
1l + . Using the QoS, layer 1l + does not need to know

the actions and dynamics at lower layers.
By knowing the QoS 1

k
LZ − provided from layer 1L − ,

layer L can be computed as ()1, |k k k
in L L LR s b Z − . In other

words, the internal reward inR is independent of the states
and actions in the lower layers, given the QoS 1

k
LZ −

provided from layer 1L − . The more details about the
upward message is presented in [9]. Hence, the upward
message is , 1l l

k
lθ + = Z where k

lZ is the necessary QoS
levels required by the upper layers. The more details about
the upward message are presented in [9]

...

1
ks

1
ka

1
kb

,
1
a kφ

,
1
b kφ

k
Ls

k
La

k
Lb

,a k
Lφ

,b k
Lφ

k
LZ

Environm
ent

Layer 1

Layer L

QoS

Optimal policy

Optimal policy

Layer
Optimizer

QoS

Layer
Optimizer

1,2θ
2,1θ

, 1L Lθ − 1,L Lθ −

State transition
()1 1| , , ,L L L L Lp s s a Z→ −′ ′s

()1 1 1| ,p s s a′
State transition

Internal
policy

External
policy

State

Message

Internal
policy

External
policy

Dynamics

Dynamics

Figure 1. Layered cross-layer optimization framework

Downward message: As in the definition of the layered
MDP, each layer is regarded as an autonomous entity that
performs its own actions. However, the layers can cooperate
via the information exchange to find the optimal state-value
function ()

*V s as in the value iteration for the central
MDP [8]. By decomposing the value iteration for the central
MDP given in [9], we can obtain the following theorem.
Theorem 1: The state-value function ()

*V s
corresponding to the optimal policy can be obtained using a
layered value iteration algorithm. At iteration n , each layer
performs a sub-value iteration which is given in Table 1.

The proof is omitted here due to the space limitation and
can be found in [9].

The layered value iteration is performed as follows: at
each iteration n , layer L performs the sub-value iteration
as in Eq. (7) to obtain the state-value function

()*
, 1 1 -1n L LV − →′s which services as future state-value function

at layer 1L − . Then, in general, layer l performs the sub-
value iteration as in Eq. (8) based on the future state-value
function from layer 1l + to generate ()*

1 1n lV → −′s .
Finally, layer 1 performs the sub-value iteration as in Eq.
(9) to generate the state-value function ()*

, 1n L LV →s which

is ()*
nV s as in the centralized value iteration.
Then the message exchanged from layer 1l + to layer

l is (){ }*
1, 1 1l l n lVθ + − →′= s .

Table 1. Sub-value iteration at each layer.
Layer Sub-value iteration form at iteration n

L

()

() ()

() ()

*
, 1 1 -1

,

*
1 1 1, 1

max

, ,

| , , ,

L L L L

L L

n L L
a Z

in L L L L L L

L L L L L n L L

s

V

R s Z c s a

p s s a Z V

λ

γ

− →
∈ ∈

→ − − →
∈

′ =

− +

′ ′ ′

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

s

s s

Z

S

A

 (7)

l

()

() () ()

*
, 1 1 -1

*
1 1 , 1

max

, | , ,

l l

l l

n l l
a

l l l l l l l l n l l

V

c s a p s s a Vλ

− →
∈

→ − →
′∈

′ =

′ ′ ′− +
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
s

s

s s

A

S

 (8)

1

()

() () ()

1 1

1 1

*
, 1

*
1 1 1 1 1 1 1 ,1 1

max

, | ,

n L L
a

n

V

c s a p a Vλ

→
∈

′∈

=

′ ′− +
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
s

s

s s s

A

S

 (9)

4. ON-LINE ADAPTATION

In this section, we extend the layered MDP framework to
perform on-line adaptation for the case in which the models
are unknown.
4.1 On-line adaptation using actor-critic learning

When the dynamics models are unknown, these models
can be learned using learning techniques [10]. To highlight
the advantage of the proposed layered MDP framework, we
use for illustration the actor-critic reinforcement learning
algorithm [10] for the on-line transmission strategy
adaptation. The actor-critic algorithm separately updates the
policy and the state-value function for each state. The policy
structure is used to select actions at each state and is called
the actor. The state-value function is used to criticize the
actions selected by the actor and is called the critic. We
briefly discuss the state-value function and policy update
used in the actor-critic algorithm. The algorithm’s details
about the algorithm can be found in [10].
4.1.1 State-value function update

During the on-line adaptation, the state-value function
()V s is unknown and must be estimated on-line. When

performing action kξ , we can update the state-value
function, given the current reward (),k kR s ξ as follows:

72

 () ()
()

() ()
1

+1

,k k

k k k k

k k k k

R
V V

V V
α

γ
+

+
← +

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

s
s s

s s

ξ
 (10)

where α is a positive step-size parameter and ()kV ⋅ and
()1kV + ⋅ are the estimated future rewards for stage k and

stage 1k + , respectively. Since the real future reward is
unknown, ()+1k kV s is used instead to update the state-
value function. The update procedure for the value function
in the actor-critic learning algorithm is performed in the
state-value function update module illustrated in Figure 2.
4.1.2 Policy update

The state-value function ()kV ⋅ is used to criticize the
selected action. After each action selected by the actor, the
critic evaluates the selected action at current state ks to
determine whether the value function at the current state
performs better or worse than expected. This evaluation can
be defined as the time-difference error as follows:
 () () ()+1,k k k k k k kR V Vδ γ= + −s s sξ (11)

If the error kδ is positive, it means that the tendency to
select action kξ should be strengthened in the future, while
if it is negative, the tendency to select kξ should be
weakened.

To generate the action, the actor defines a value (),ρ s ξ
at state s for each action ξ to indicate the tendency to
select that action. Then the actor generates the action
according to the Gibbs softmax method [10]:
 () () ()

1

,,, /
L

ll

e eρρ

=

′

′∈

=Ψ
∏
∑ sss

X

ξξ

ξ

ξ (12)

where (),Ψ s ξ represents the probability of performing
action ξ at state s .

The strengthening and weakening of the action can then
be implemented by increasing or decreasing the tendency as
follows:
 () () ()(), , 1 ,k k k k k k kρ ρ βδ← + − Ψs s sξ ξ ξ (13)
where β is a positive step-size parameter and reflects the
learning rate for the tendency update. The policy update is
performed in the policy module in Figure 2.

Environm
ent

Action

Reward

(),k kR s ξkδ
Time difference error

State-value function
kV

Tendency
(),k kρ s ξ kξ

State
1k+s

Figure 2. Actor-critic learning structure based on [10]
4.2 On-line adaptation using layered learning

Based on the actor-critic learning algorithm, we develop
a layered actor-critic learning algorithm which takes into
account the current layered network architecture. In this

layered learning algorithm, each layer has its own actor and
critic to select the action and criticize the selected action.
4.2.1 State-value update

Recall the value iteration at layer { }1,...,l L∈ . We can
define the time-difference error at layer l as

() () ()

()

() () ()

() () ()

1

1
1 1 1

1
1 1 1 1 1

1 1
1 1 1 1

, ,

1

. .

k
l

k k k k k k
in L L L L L L

k k
L L

c k k k k k

c k k k k k
l l l l l l l

R s Z c s a V
l L

V

c a V s V l

o wc a V V

δ

λ γ

λ

λ

+

+
− → −

+

+ +
→ − → −

=

− +
=

−

− + − =

− + −

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s

s

s

s s

.(14)

Then, ()1 1
1

k k
l lV + +

→s is updated as
 () ()1 1 1 1

1 1 1, 1, ..., 1k k k k k
l l l l lV V l Lαδ+ + + +

→ → +← + = −s s . (15)
The state-value function ()1k kV + s is updated as

() ()

() () () ()

1

1

1

, ,

k k k k

L
k k c k k k k k k

in L L l l l l

l

V V

R s Z c s A V Vα λ γ

+

+

=

← +

− + −
⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦

∑

s s

s s
 (16)

4.2.2 Policy update
Given the state at each layer, the internal actions are

independent of the environmental dynamics. In this learning
algorithm, the state s is assumed to be known by each
layer. From Section 3, we know that the optimal frontier
LZ only depends on the state s , and hence, layer L can

select the optimal QoS L LZ ∈ Z . The tendency at layer L
is updated using the time-difference error kLδ to strengthen
or weaken the currently selected action, as follows:
 () () ()(), , , , 1 , ,k k k k k k k k k k

L L L L l L LLa Z a Z a Zρ ρ βδ← + − Ψs s s (17)
Similarly, the tendency at layer l is updated as

 () () ()(), , 1 ,k k k k k k k
l l l l la a aρ ρ βδ← + − Ψs s s (18)

Where lΨ is computed similarly to Eq. (12). The mixed
action is generated similarly to Eq. (12). The layered
learning algorithm is portrayed in Figure 3.

ks

Layer L

Layer L-1

Layer 1

1k+s

Generate
aL,ZL,bL

Generate
aL-1,bL-1

Generate
a1,b1

ZL-1

ZL-2

Z1

Update V, VL,

Update VL-1,

Update V1

1 1
ccλ

2

1

L
c
ll

l

cλ
−

′′
′=
∑

1

1

L
c
ll

l

cλ
−

′′
′=
∑ ()1

1 1 1
k k
L LV +
− → −s k

Lδ

Lρ

1Lρ −

1ρ

Actor generates actions
according to preference at

each layer

Critic at each layer updates the state-value
function and actor updates the tendency

based on exchanged information and time
difference errors

time

()1
2 1 2

k k
L LV +
− → −s 1

k
Lδ −

()1
1 1
k kV s +

2
kδ

Figure 3. Proposed layered actor-critic learning

procedure

5. ON-LINE ADAPTATION SIMULATION

73

In this simulation, we show that our layered learning
algorithm adheres to the layered architecture, while
performing as well as the centralized learning algorithm.

In this simulation, we consider that the WSTA transmits
delay-sensitive data to another WSTA and accesses the
wireless channel using TDMA (e.g. as in 802.11e HCF).
Assume that the time is slotted and divided into frames
consisting of N time slots. We consider the optimization of
the transmission strategies available at the APP, MAC, and
PHY layers, i.e. 3L = .

In the PHY layer, the channel gain can be modeled as a
finite state Markov chain (FSMC) [11]. To satisfy the
service requirement from upper layers, the PHY layer adapt
its transmission power level, and the modulation schemes
based on the channel dynamics.

In the MAC layer, we consider a more general multi-
user scheduling method which allows the WSTA to
dynamically compete for the available time slots [12]. At
the beginning of each frame, the WSTA competes with
other WSTAs for the time to access the spectrum. We can
model the amount of time allocated to the WSTA as a finite
state Markov chain, which is controlled by the competition
bid. Besides competing for the resource, the MAC can also
perform error control algorithms (e.g. ARQ) to improve the
service provided to the upper layers.

In the APP layer, the WSTA generates delay-sensitive
data. The delay-sensitivity is represented by the delay
deadlines after which the packets will expire and therefore
not contribute to the WSTA’s utility. As in [4], we can
model the number of packets with the various delay
deadlines available for transmission as a Markov chain. The
number of packets available for transmission depends on the
source coding parameters adaptation as well as the
transmission strategies at the lower layers.

The dynamics models (transition probabilities) at each
layer are unknown. When using the centralized learning
algorithm, a central entity within the WSTA is assumed to
update the state-value function (critic) and policy (actor)
and to choose the action to be performed. When using the
layered learning algorithm, each layer updates its own state-
value function and policy using the information from other
layers, and performs its own action autonomously. Figure 4
shows the average reward achieved by the traditional
learning (shown in Section 4.1) and layered learning
algorithms (shown in Section 4.2). When learning for
enough time, the layered learning algorithm approaches the
optimal solution while the centralized one still has a gap of
approximately 0.1. This can be explained as follows: in the
centralized algorithm, the wireless user has to learn the joint
environmental dynamics and update the transmission
strategies at each layer simultaneously, which often requires
more time to find the optimal transmission strategies.
However, in the layered learning algorithm, each layer
updates its own state-value function and tendency based on
the exchanged information, and autonomously adapts its

transmission strategies to its own experienced dynamics.
The proposed autonomous adaptation allows each layer to
quickly find its optimal actions in the various states, thereby
resulting in an improved performance as opposed to the
centralized learning solution.

0 0.5 1 1.5 2

x 10
5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

stage

av
er

ag
e

re
wa

rd
 p

er
 s

ta
ge

Layered learning
Centralized learning
Optimal policy

Figure 4. Average reward achieved using both

centralized learning and layered learning

6. CONCLUSION

In this paper we formulated the dynamic cross-layer
optimization problem as a layered MDP with information
exchanges among layers. The layered MDP framework also
allows each layer to autonomously learn its environment
dynamics on-line. Our results show that the layered
learning algorithm outperforms the traditional learning
algorithm for cross-layer optimization.

REFERENCES
[1] D. Bertsekas et al, “Data networks,” Prentice Hall, Inc. Upper Saddle

River, NJ, 1987.
[2] M. van der Schaar et al, “Cross-layer wireless multimedia

transmission: challenges, principles, and new paradigms,” IEEE
Wireless Commun. Mag., vol. 12, no. 4, Aug. 2005.

[3] V. Kawadia et al, “A cautionary perspective on cross-layer design,”
IEEE Wireless Commun., pp. 3-11, vol. 12, no. 1, Feb. 2005.

[4] T. Holliday et al, “Optimal Power Control and Source-Channel
Coding for Delay Constrained Traffic over Wireless Channels,”
Proceedings of ICC’02, May 2002.

[5] A. Ekbal et al, “QoS-constrained physical layer optimization for
correlated flat-fading wireless channels,” proceedings of ICC’04, vol.
7, pp. 4211-4215, June., 2004.

[6] D. Djonin et al, “MIMO transmission control in fading channels-a
constrainted Markov decision process formulation with monotone
randomized policies,” IEEE Trans. Signal Process., vol. 55, no. 10,
pp. 5069-5083, Oct. 2007.

[7] X. Wang et al, “Analyzing and optimizing adaptive modulation
coding jointly with ARQ for QoS-guaranteed traffic,” IEEE Trans.
Veh. Technol., vol. 56, no. 2, Mar. 2007.

[8] D. P. Bertsekas, “Dynamic programming and optimal control,” 3rd,
Athena Scientific, Belmont, Massachusetts, 2005.

[9] F. Fu et al, “A new theoretic foundation for cross-layer optimization,”
Technique report, Dec. 2007, available on
http://xxx.arxiv.org/abs/0712.2497.

[10] R. S. Sutton et al, “Reinforcement learning: an introduction,”
Cambridge, MA:MIT press, 1998.

[11] Q. Zhang et al, “Finite-state Markov Model for Reyleigh fading
channels,” IEEE Trans. Commun. vol. 47, no. 11, Nov. 1999.

[12] F. Fu et al, “Non-collaborative resource management for wireless
multimedia applications using mechanism design,” IEEE Transaction
on Multimedia, vol. 9, no. 4, pp. 851-868, Jun. 2007.

74

