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ABSTRACT 
 
Cross-layer optimization solutions have been proposed in 
recent years to improve the performance of network users 
operating in a time-varying, error-prone wireless 
environment. However, these solutions often rely on ad-hoc 
optimization approaches with known environmental 
dynamics experienced at various layers by a user and violate 
the layered network architecture of the protocol stack. This 
paper presents a new theoretic foundation for cross-layer 
optimization, which allows each layer to autonomously 
learn the environmental dynamics, while maximizing the 
utility of the wireless user by optimally determining what 
information needs to be exchanged among layers. Hence, 
this cross-layer framework does not change the current 
layered architecture. The experimental results demonstrate 
that the proposed layered learning framework achieves near-
optimal performance. 

Index Terms— Cross-layer optimization, layered 
MDP, learning, information exchange, environmental 
dynamics. 

1. INTRODUCTION 

The Open Systems Interconnection (OSI) model [1] is a 
layered, abstract organization of the various 
communications and computer networks protocols. To 
optimize the different protocol parameters from different 
layers, the wireless stations (WSTAs) need to consider the 
dynamic wireless network “environment” resulting from the 
repeated interaction with other stations, the experienced 
time-varying channel conditions and, for delay-sensitive 
applications, the time-varying source characteristics. 
Moreover, it should be noted that a WSTA needs to jointly 
optimize the selected protocol parameters within each layer 
such that the utility of the WSTA is maximized. The joint 
optimization of the transmission strategies at the various 
layers is referred to as cross-layer design [2][3]. Recently, 
various cross-layer design methods have been proposed in 
order to jointly adapt the transmission strategies at each 
layer of the OSI stack to the rapidly varying environment 
and often scarce network resources by assuming that the 
environmental dynamics are known [4][7].  

The advantage of the layered architecture is that the 
designer or implementer of the protocol or algorithm at a 

particular layer can focus on that layer without worrying 
about the rest of stack [3]. However, most existing cross-
layer design solutions advocate improving the system utility 
by violating the current layered architecture of wireless 
networks. These cross-layer interactions create the 
dependencies among the layers which will affect not only 
the concerned layer but also other layers. Hence, such 
solutions are undesirable because they require a complete 
redesign of current networks and protocols and thus, require 
a high implementation cost [3].  

Furthermore, most existing cross-layer design solutions 
aim at maximizing the WSTA’s utility by jointly adapting 
the transmission strategies across multiple layers to the 
known environmental dynamics [4][5]. These solutions, 
however, neglect that the environmental dynamics are 
generally unknown and the off-line cross-layer optimization 
will lead to worse performance.  

Unlike the previous works that jointly optimize the 
cross-layer strategies in a centralized way, we propose a 
layered MDP solution to drive the cross-layer optimization. 
In this layered MDP framework, each layer makes its 
transmission decision (i.e. selects the transmission 
strategies, e.g. packet scheduling in the application (APP) 
layer, retransmission in the MAC layer and modulation 
selection in the physical (PHY) layer) in an autonomous 
manner, by considering the dynamics experienced at that 
layer as well as the information available from other layers. 
Importantly, using this layered optimization framework, we 
do not change the current layered architecture of the 
protocol stack. Moreover, the current algorithms and 
protocols currently implemented at each layer also remain 
unaffected, as the proposed framework requires only the 
exchange of information across layers and the optimization 
of available parameters at each layer. To exchange 
information across multiple layers, we define a message 
exchange mechanism in which the content of the message 
captures the performed transmission strategies and 
experienced dynamics at each layer.  

To capture the unknown environment dynamics, we 
propose a layered learning algorithm to allow each layer to 
autonomously update its own transmission strategies based 
on the experienced environment dynamics.  

The rest of the paper is organized as follows. Section 2 
discusses the problem settings for the cross-layer 
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optimization and formulates the cross-layer design as an 
MDP problem. Section 3 presents a layered value iteration 
algorithm for optimally solving the layered MDP. Section 4 
discusses the on-line learning based on the layered MDP 
framework. Section 5 gives the simulations results. The 
paper concludes in Section 6. 

2. CROSS-LAYER PROBLEM STATEMENT  

We consider one WSTA transmitting its time-varying traffic 
to another WSTA (e.g. base station) over a wireless network 
(e.g. wireless LAN, cellular network, etc.). We also assume 
that there are L  participating layers1 in the protocol stack. 
Each layer is indexed { }1, ...,l L∈  with layer 1 
corresponding to the lowest participating layer (e.g. PHY 
layer) and layer L  corresponding to the highest 
participating layer (e.g. APP layer). The WSTA interacts 
with the dynamic environment at various layers in order to 
maximize the application utility.   
2.1 States  

In this paper, the state of the layers is defined such that 
future transmission strategies can be determined 
independent of the past history given the current state. In 
other words, the state encapsulates all the past information 
required for future strategy adaptation. We refer to this type 
of state as Markovian state. When considering the layered 
architecture of current networks, we are able to define a 
state l ls ∈ S  for each layer l . Then, the state of the entire 
WSTA is denoted by ∈s S , with 

1

L
ll=

= ∏ SS . 

2.2 Actions  
 In a layered architecture, a WSTA takes different 

transmission actions in each state of each layer. The 
transmission actions can be classified into two types at each 
layer l : an external action is performed to determine the 
state transition, and an internal action is performed to 
determine the service provided to the upper layers for the 
packet(s) transmission.  

The external actions at each layer l  are denoted by 
l la ∈ A , where lA  is the set of the possible external actions 

available at layer l . The external actions for the WSTA in 
all the layers are denoted by [ ]1, ..., La a= ∈a A  , where 

1

L
ll=

= ∏ AA . The internal actions are denoted by l lb ∈ B , 
where lB  is the set of the possible internal actions available 
at layer l . The internal actions are performed by the WSTA 
to efficiently utilize the wireless medium given the network 
resource allocation and its own resource budget (e.g. power 
constraint), by providing the QoS required by the supported 
applications. The internal actions for the WSTA across all 
the layers are denoted by [ ]1, ..., Lb b= ∈b B , where 

1

L
ll=

= ∏ BB . Hence, the action at layer l  is the 

                                                 
1 If one layer does not participate in the cross-layer design, it can simply be 
omitted. Hence, we consider here only the L participating layers. 

aggregation of external and internal actions, denoted by 
l l l la bξ = ∈⎡ ⎤⎢ ⎥⎣ ⎦ X , where l l l= ×A BX . The joint action 

of the WSTA is denoted by [ ]1 1
, ...,

L
L ll

ξ ξ
=

= ∈ ∏ξ X .  
The external actions are performed to drive the state 

transition. In general, because states are Markovian, the 
state transition of the WSTA only depends on the current 
state s , the current performed actions, and the 
environmental dynamics. The corresponding transition 
probability is denoted by  ( )| ,p ′s s ξ . 

Due to the layered architecture of the wireless network, 
the state transition probability can be further decomposed. 
Using Bayes rule, the transition probability can be rewritten 
as  

 ( ) ( )1 -1
1

| , | , ,
L

l l
l

p p s →
=

′ ′ ′= ∏s s s sξ ξ  (1) 

where [ ]1 1, ...,l ls s→′ ′ ′=s . 
In this paper, based on the actions we mentioned before, 

the transition probability can be decomposed as  

( ) ( ) ( )
1

1 -1 1 -1
1

| , | , , | , , ,
L

l l l l L L L
l

p p s s a p s a
−

→ →
=

′ ′ ′ ′ ′= ∏s s s s s bξ  (2) 

This decomposition is due to the layered network 
architecture and enables us to develop a layered MDP 
framework, which will be presented in Section 3. 
2.3 Utility function 

The utility gain obtained in layer L  is based on the 
states and internal actions at each layer and it is denoted by 
( ),g s b . The transmission cost at layer l  represents the cost 

of performing both the external and internal actions, e.g. the 
amount of power allocated to determine the channel 
conditions or the tax (tokens, money) spent for consuming 
wireless resources. In general, the transmission cost of 
performing the external (internal) action at layer l  is 
denoted by ( ),l l lc s a  ( ( ),l l ld s b ), which is a function of 
the external (internal) action and the state of layer l . For 
illustration, we assume that the reward is defined as  

 ( ) ( ) ( ) ( )
1 1

, , , ,
L L

a b
l l l l l l l l

l l

R g c s a d s bλ λ
= =

= − −∑ ∑s s bξ  (3) 

where a
lλ  ( b

lλ ) is a external (internal) Lagrangian multiplier 
in layer l , determined by the WSTA to trade off the utility 
and transmission cost. We assume that the Lagrangian 
multipliers a

lλ  and b
lλ  are known. The optimal Lagrangian 

multipliers depend on the available resource budget and can 
be obtained as in [6]. The reward in Eq. (3) can be further 
decomposed into two parts: one is the internal reward, 
which depends on the internal actions, and the other is the 
external reward, which depends on the external actions. The 
internal reward is  

 ( ) ( ) ( )
1

, , ,
L

b
in l l l l

l

R g d s bλ
=

= − ∑s b s b , (4) 

and the external reward is  
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 ( ) ( )
1

, ,
L

a
ex l l l l

l

R c s aλ
=

= −∑s a . (5) 

Hence, the reward is in exR R R= + . 
2.4 Foresighted decision making 

As described in Section 2.2, the state transition at each 
layer is controlled by the external actions. For simplicity, 
we assume that the state transition in each layer is 
synchronized and operates at the same time scale, such that 
the transition can be discretized into stages during which the 
WSTA has constant state and performs static actions. The 
length of the stage can be determined based on how fast the 
environment changes. We use a superscript k  to denote 
stage k . Hence, the state of the WSTA at stage k ∈  is 
denoted by ks with each element kls  being the state of layer 
l ; similarly, the joint action performed by the WSTA at 
state k  is kξ  with each element [ ],k k k

l l la bξ = . The state 
transition probability is given by Eq. (2) and the stage 
reward is given by Eq. (3). 

Unlike the tradition cross-layer adaptation that focuses 
on the myopic (i.e. immediate) utility, in the proposed cross-
layer framework, the goal is to find the optimal internal and 
external actions at each stage such that a cumulative 
function of the rewards is maximized. We refer to this 
decision process as the foresighted cross-layer decision. By 
maximizing the cumulative reward, the WSTA is able to 
take into account the impact of the current actions on the 
future reward.  

Specifically, we assume that the WSTA will maximize 
the discounted accumulative reward, which is defined as 

 ( ) ( )0

0

, |k kk

k

Rγ
∞

=

∑ s sξ  (6) 

where γ  is a discounted rate with 0 1γ≤ <  and 0s  is the 
initial state. Unlike the formulation in [6], where the time-
average reward is considered, we use the discounted 
accumulated reward with higher weight on the current 
reward. The reasons for this are as follows: (i) for delay-
sensitive applications, the data needs to be sent out as soon 
as possible to avoid expiration, and (ii) due to the 
unexpected environmental dynamics in the future, the 
WSTA may care more about the immediate reward. Hence, 
this needs to be considered when determining the values of 
γ  for a specific cross-layer problem   

3. LAYERED MDP FORMULATION 

The internal and external actions need to be jointly 
optimized in order to determine the optimal cross-layer 
performance. Hence, information exchanges between layers 
are required. Existing cross-layer optimization frameworks 
require a central controller to decide the parameter 
configuration assuming that the complete information from 
all the layers is available to the central controller [7]. The 
foresighted cross-layer optimization can be formulated as an 
MDP and solved using value iteration [8]. However, the 

problem structure discussed in Section 2 enables us to 
decompose the MDP into a layered MDP which is defined 
as follows:  
Definition (Layered MDP with information exchange) 
The layered MDP model with information exchange is 
given by the tuple 

{ } { } { }1
, 1 , 11 1 2

, , , , , , ,L LL
l l l l ll l l

p R γ−
+ −= = =

= Θ ΘM L S X , where  
• { }1, ...,L=L  is a set of L  layers, each of which 

takes the internal and external actions individually. 
• S is a finite set of states, each element ∈s S  of which 

contains [ ]1, , Ls s . 
• lX  is a finite set of actions available to layer l , each 

element l lξ ∈ X  of which contains the external and 
internal actions, i.e. [ ],l l la bξ = . 

• , 1l l+Θ  is the message set sent by layer l  to its upper 
layer 1l + , where , 1 , 1l l l lθ + +∈ Θ  represents a message 
sent by layer l  to its upper layer 1l +  (i.e. upward 
message). 

• , 1l l−Θ  is the message set sent by layer l  to its lower 
layer 1l − , and , 1 , 1l l l lθ − −∈ Θ  represents a message 
sent by layer l  to its lower layer 1l −  (i.e. downward 
message). 

• p  is the transition probability function. ( )| ,p ′s s ξ  is 
the probability of moving from state ∈s S  to the 
state ′ ∈s S  when layer l ∈ L  performs action lξ . 
We assume that the transition model is stationary and 
independent of the stage (i.e. time). 

• 
1

:
L

ll
R

=
×∏ XS  is the system stage reward 

function which has the form of ( ),R s ξ , i.e. the reward 
is determined by the state and actions in each layer. 

• γ  is the discounted factor. 
The framework of the layered MDP with information 

exchange for the foresighted cross-layer optimization 
problem is illustrated in Figure 1. From this figure, we 
observe that the layer optimizer is not required to know 
other layers’ state space, action space and dynamics models. 

Upward message: At the state ks , by deploying the 
internal actions, the WSTA can determine for each layer (i) 
the probability of the packet being successfully received at 
the destination; (ii) the amount of time it takes to transmit 
on average; and (iii) the cost associated with its 
transmission. The transmission result of whether a packet is 
successfully received, is represented by the average packet 
loss ratio (PLR) at layer l  at stage k , which is denoted by 

( )1 1,k k k
l l lε → →s b  where [ ]1 1 , ...,

k k k
l ls s→ =s  and 

[ ]1 1 , ...,k k k
l lb b→ =b . The average amount of time spent on 

transmitting one packet at layer l  at stage k  is denoted by 
( )1 1,k k k

l l lt → →s b . The aggregated transmission cost incurred 
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by performing internal actions at layer l is defined by  
( ) ( )1 1 1

, ,
lk k k b k k

l l l ll l ll
f d s bλ ′→ → ′ ′ ′′=

= ∑s b . 

To compute the internal reward function ( ),k k
inR s b , 

layer L  has to know the packet loss probability, the average 
amount of time for packet transmission and the transmission 
cost provided from the lower layers in stage k . We can 
define a message which captures this information from 
lower layers. This message is the QoS at layer l  which is 
defined as a three-tuple [ ], ,

Tk k k k
l l l lZ t fε= . The QoS at layer 

l  represents the service layer l  provides to its upper layer 
1l + . Using the QoS, layer 1l +  does not need to know 

the actions and dynamics at lower layers.  
By knowing the QoS 1

k
LZ −  provided from layer 1L − , 

layer L  can be computed as ( )1, |k k k
in L L LR s b Z − . In other 

words, the internal reward inR  is independent of the states 
and actions in the lower layers, given the QoS 1

k
LZ −  

provided from layer 1L − . The more details about the 
upward message is presented in [9]. Hence, the upward 
message is , 1l l

k
lθ + = Z  where k

lZ  is the necessary QoS 
levels required by the upper layers. The more details about 
the upward message are presented in [9] 

...

1
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1
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Figure 1. Layered cross-layer optimization framework 

Downward message: As in the definition of the layered 
MDP, each layer is regarded as an autonomous entity that 
performs its own actions. However, the layers can cooperate 
via the information exchange to find the optimal state-value 
function ( )

*V s  as in the value iteration for the central 
MDP [8]. By decomposing the value iteration for the central 
MDP given in [9], we can obtain the following theorem. 
Theorem 1: The state-value function ( )

*V s  
corresponding to the optimal policy can be obtained using a 
layered value iteration algorithm. At iteration n , each layer 
performs a sub-value iteration which is given in Table 1.  

The proof is omitted here due to the space limitation and 
can be found in [9].  

The layered value iteration is performed as follows: at 
each iteration n , layer L  performs the sub-value iteration 
as in Eq. (7) to obtain the state-value function 

( )*
, 1 1 -1n L LV − →′s  which services as future state-value function 

at layer 1L − . Then, in general, layer l  performs the sub-
value iteration as in Eq. (8) based on the future state-value 
function from layer 1l +  to generate  ( )*

1 1n lV → −′s .  
Finally, layer 1 performs the sub-value iteration as in Eq. 
(9) to generate the state-value function ( )*

, 1n L LV →s  which 

is ( )*
nV s  as in the centralized value iteration.  
Then the message exchanged from layer 1l +  to layer 

l  is ( ){ }*
1, 1 1l l n lVθ + − →′= s . 

Table 1. Sub-value iteration at each layer. 
Layer Sub-value iteration form at iteration n  

L  

( )

( ) ( )

( ) ( )

*
, 1 1 -1

,

*
1 1 1, 1

max

, ,

| , , ,

L L L L

L L

n L L
a Z

in L L L L L L

L L L L L n L L

s

V

R s Z c s a

p s s a Z V

λ

γ

− →
∈ ∈

→ − − →
∈

′ =

− +

′ ′ ′

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

s

s s

Z

S

A

         (7) 

l  

( )

( ) ( ) ( )

*
, 1 1 -1

*
1 1 , 1

max

, | , ,

l l

l l

n l l
a

l l l l l l l l n l l

V

c s a p s s a Vλ

− →
∈

→ − →
′∈

′ =

′ ′ ′− +
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
s

s

s s

A

S

     (8) 

1 

( )

( ) ( ) ( )

1 1

1 1

*
, 1

*
1 1 1 1 1 1 1 ,1 1

max

, | ,

n L L
a

n

V

c s a p a Vλ

→
∈

′∈

=

′ ′− +
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
s

s

s s s

A

S

                (9) 

4. ON-LINE ADAPTATION 

In this section, we extend the layered MDP framework to 
perform on-line adaptation for the case in which the models 
are unknown. 
4.1 On-line adaptation using actor-critic learning 

When the dynamics models are unknown, these models 
can be learned using learning techniques [10]. To highlight 
the advantage of the proposed layered MDP framework, we 
use for illustration the actor-critic reinforcement learning 
algorithm [10] for the on-line transmission strategy 
adaptation. The actor-critic algorithm separately updates the 
policy and the state-value function for each state. The policy 
structure is used to select actions at each state and is called 
the actor. The state-value function is used to criticize the 
actions selected by the actor and is called the critic.  We 
briefly discuss the state-value function and policy update 
used in the actor-critic algorithm. The algorithm’s details 
about the algorithm can be found in [10].  
4.1.1 State-value function update 

During the on-line adaptation, the state-value function 
( )V s  is unknown and must be estimated on-line. When 

performing action kξ , we can update the state-value 
function, given the current reward ( ),k kR s ξ  as follows:  
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 ( ) ( )
( )

( ) ( )
1

+1

,k k

k k k k

k k k k

R
V V

V V
α

γ
+

+
← +

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

s
s s

s s

ξ
 (10) 

where α  is a positive step-size parameter  and ( )kV ⋅  and 
( )1kV + ⋅  are the estimated future rewards for stage k  and 

stage 1k + , respectively. Since the real future reward is 
unknown, ( )+1k kV s  is used instead to update the state-
value function. The update procedure for the value function 
in the actor-critic learning algorithm is performed in the 
state-value function update module illustrated in Figure 2. 
4.1.2 Policy update 

The state-value function ( )kV ⋅  is used to criticize the 
selected action. After each action selected by the actor, the 
critic evaluates the selected action at current state ks  to 
determine whether the value function at the current state 
performs better or worse than expected. This evaluation can 
be defined as the time-difference error as follows:  
 ( ) ( ) ( )+1,k k k k k k kR V Vδ γ= + −s s sξ  (11) 

If the error kδ  is positive, it means that the tendency to 
select action kξ  should be strengthened in the future, while 
if it is negative, the tendency to select kξ  should be 
weakened.  

To generate the action, the actor defines a value ( ),ρ s ξ  
at state s  for each action ξ  to indicate the tendency to 
select that action. Then the actor generates the action 
according to the Gibbs softmax method [10]:  
 ( ) ( ) ( )

1

,,, /
L

ll

e eρρ

=

′

′∈

=Ψ
∏
∑ sss

X

ξξ

ξ

ξ  (12) 

where ( ),Ψ s ξ  represents the probability of performing 
action ξ  at state s .  

The strengthening and weakening of the action can then 
be implemented by increasing or decreasing the tendency as 
follows: 
 ( ) ( ) ( )( ), , 1 ,k k k k k k kρ ρ βδ← + − Ψs s sξ ξ ξ  (13) 
where β  is a positive step-size parameter and reflects the 
learning rate for the tendency update. The policy update is 
performed in the policy module in Figure 2.  
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Figure 2. Actor-critic learning structure based on [10] 
4.2 On-line adaptation using layered learning 

Based on the actor-critic learning algorithm, we develop 
a layered actor-critic learning algorithm which takes into 
account the current layered network architecture. In this 

layered learning algorithm, each layer has its own actor and 
critic to select the action and criticize the selected action.  
4.2.1 State-value update 

Recall the value iteration at layer { }1,...,l L∈ . We can 
define the time-difference error at layer l  as  

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1

1
1 1 1

1
1 1 1 1 1

1 1
1 1 1 1

, ,

1

. .

k
l

k k k k k k
in L L L L L L

k k
L L

c k k k k k

c k k k k k
l l l l l l l

R s Z c s a V
l L

V

c a V s V l

o wc a V V

δ

λ γ

λ

λ

+

+
− → −

+

+ +
→ − → −

=

− +
=

−

− + − =

− + −

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s

s

s

s s

.(14) 

Then, ( )1 1
1

k k
l lV + +

→s  is updated as  
 ( ) ( )1 1 1 1

1 1 1, 1, ..., 1k k k k k
l l l l lV V l Lαδ+ + + +

→ → +← + = −s s . (15) 
The state-value function ( )1k kV + s  is updated as  

 
( ) ( )

( ) ( ) ( ) ( )

1

1

1

, ,

k k k k

L
k k c k k k k k k

in L L l l l l

l

V V

R s Z c s A V Vα λ γ

+

+

=

← +

− + −
⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦

∑

s s

s s
 (16) 

4.2.2 Policy update 
Given the state at each layer, the internal actions are 

independent of the environmental dynamics. In this learning 
algorithm, the state s  is assumed to be known by each 
layer. From Section 3, we know that the optimal frontier 
LZ  only depends on the state s , and hence, layer L  can 

select the optimal QoS L LZ ∈ Z . The tendency at layer L  
is updated using the time-difference error kLδ  to strengthen 
or weaken the currently selected action, as follows: 
 ( ) ( ) ( )( ), , , , 1 , ,k k k k k k k k k k

L L L L l L LLa Z a Z a Zρ ρ βδ← + − Ψs s s  (17) 
Similarly, the tendency at layer l  is updated as  

 ( ) ( ) ( )( ), , 1 ,k k k k k k k
l l l l la a aρ ρ βδ← + − Ψs s s  (18) 

Where lΨ  is computed similarly to Eq. (12). The mixed 
action is generated similarly to Eq. (12). The layered 
learning algorithm is portrayed in Figure 3.   
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Figure 3. Proposed layered actor-critic learning 

procedure 
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In this simulation, we show that our layered learning 
algorithm adheres to the layered architecture, while 
performing as well as the centralized learning algorithm.  

In this simulation, we consider that the WSTA transmits 
delay-sensitive data to another WSTA and accesses the 
wireless channel using TDMA (e.g. as in 802.11e HCF). 
Assume that the time is slotted and divided into frames 
consisting of N  time slots. We consider the optimization of 
the transmission strategies available at the APP, MAC, and 
PHY layers, i.e. 3L = .  

In the PHY layer, the channel gain can be modeled as a 
finite state Markov chain (FSMC) [11]. To satisfy the 
service requirement from upper layers, the PHY layer adapt 
its transmission power level, and the modulation schemes 
based on the channel dynamics.  

In the MAC layer, we consider a more general multi-
user scheduling method which allows the WSTA to 
dynamically compete for the available time slots [12]. At 
the beginning of each frame, the WSTA competes with 
other WSTAs for the time to access the spectrum. We can 
model the amount of time allocated to the WSTA as a finite 
state Markov chain, which is controlled by the competition 
bid. Besides competing for the resource, the MAC can also 
perform error control algorithms (e.g. ARQ) to improve the 
service provided to the upper layers.  

In the APP layer, the WSTA generates delay-sensitive 
data. The delay-sensitivity is represented by the delay 
deadlines after which the packets will expire and therefore 
not contribute to the WSTA’s utility. As in [4], we can 
model the number of packets with the various delay 
deadlines available for transmission as a Markov chain. The 
number of packets available for transmission depends on the 
source coding parameters adaptation as well as the 
transmission strategies at the lower layers.  

The dynamics models (transition probabilities) at each 
layer are unknown. When using the centralized learning 
algorithm, a central entity within the WSTA is assumed to 
update the state-value function (critic) and policy (actor) 
and to choose the action to be performed. When using the 
layered learning algorithm, each layer updates its own state-
value function and policy using the information from other 
layers, and performs its own action autonomously. Figure 4 
shows the average reward achieved by the traditional 
learning (shown in Section 4.1) and layered learning 
algorithms (shown in Section 4.2). When learning for 
enough time, the layered learning algorithm approaches the 
optimal solution while the centralized one still has a gap of 
approximately 0.1. This can be explained as follows: in the 
centralized algorithm, the wireless user has to learn the joint 
environmental dynamics and update the transmission 
strategies at each layer simultaneously, which often requires 
more time to find the optimal transmission strategies. 
However, in the layered learning algorithm, each layer 
updates its own state-value function and tendency based on 
the exchanged information, and autonomously adapts its 

transmission strategies to its own experienced dynamics. 
The proposed autonomous adaptation allows each layer to 
quickly find its optimal actions in the various states, thereby 
resulting in an improved performance as opposed to the 
centralized learning solution. 
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Figure 4. Average reward achieved using both 

centralized learning and layered learning 

6. CONCLUSION 

In this paper we formulated the dynamic cross-layer 
optimization problem as a layered MDP with information 
exchanges among layers. The layered MDP framework also 
allows each layer to autonomously learn its environment 
dynamics on-line.  Our results show that the layered 
learning algorithm outperforms the traditional learning 
algorithm for cross-layer optimization.  
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