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ABSTRACT Such problem is present in important applicatiolise
channel equalization and identification, sourceasajion,
The present work deals with the research of optimadlata clustering and others. Our proposed framevsdnksed
solutions in unsupervised and nonlinear signal ggsitnng. on nonlinear prediction, to be implemented by ajufilter
The proposed framework is based on nonlinear piedic  structure. Our main result consists in establishihg
to be implemented by a fuzzy filter structure. Quain  optimality of the approach by showing the equivaken
result consists in establishing the optimality e pproach between the minimum mean squared error (MMSE)
by showing the equivalence between the minimum meaestimator and the fuzzy predictor. The result enthpplied
squared error estimator and the fuzzy predictoe fHsultis in the contexts of single-input/single-output (S)SO
then applied in the contexts of SISO equalizatiord a equalization and convolutive source separation tipiet
convolutive source separation (MIMO equalizatiolye  input/multiple-output (MIMO) equalization). Also, a
also propose a strategy for the updating of thejpmiwised technique for both SISO and MIMO equalizers adamtat
nonlinear equalizer. Simulation results confirm theproposed.
effectiveness of the proposal in SISO and MIMO sciess. This paper is organized as follows. In section 2 w
present a discussion on unsupervised and nonlinear
Index Terms— blind equalization, blind source equalization. The purpose of this section is talezrevident

separation, fuzzy filter, prediction-error filter. that the fundamental results on unsupervised signal
processing are not applicable when nonlinear deviare
1. INTRODUCTION used; so we present an alternative approach based o

nonlinear prediction. The optimal MMSE SISO predigt

Over the last decades, classical approaches iststalt according to the estimation theory, is derived éct®n 3.
signal processing have encountered a significactess in  Then, in section 4, we introduce the fuzzy predictierror
several applications, especially due to their wetiablished filter and prove its optimality by demonstratings it
concepts as well as the efficiency and simplicify @ equivalence with the MMSE solution. As a final
number of algorithms. On the other hand, it mushbted contribution, an updating strategy is proposeceittisn 5; it
that the solution of some recent and challengimplems is combines an iterated local search (ILS) clustealuprithm
rather limited, even unfeasible, if classical asgtioms are with a classical recursive least squares (RLS) rialgu.
considered. As a consequence, advanced researohesSection 6 brings some simulation results to evaluae
signal processing have been characterized by thgtiad of proposed method in the particular case of SISO
some new theoretical frameworks. In particular wan ¢ equalization; comparisons with the Bayesian optimal
mention a sort of tripod formed by the growing netst on  criterion are provided. In section 7, the propoapgroach is
nonlinear processing, the disuse of the classi@isGian extended to the case of convolutive mixtures, dhema
hypothesis and the consequent use of higher otdestes MIMO equalization, and simulation results in thantext

[1]112]. are provided. Finally, our conclusions are stateseiction 8.
Both classical and advanced approaches seek a

fundamental purpose in signal processing technjghesis, 2. UNSUPERVISED AND NONLINEAR

to perform optimally. About sixty years ago, sudijeative EQUALIZATION

was attained by Kolmogorov and Wiener, by using the

classical linearity and Gaussianity hypothesesttmgewith Fig. 1 illustrates a convolutive mixture schemédeked

linear algebra and functional analysis tools. Hosvevthis by a separation and deconvolution device.

fundamental task faces increasing difficulties li&ssical In the present work we assume the input siggé} to

assumptions are discarded. have the same statistical distributions as wetbaselong to

The present work deals with the research of optimah finite alphabet. Under these assumptions, theeisys
solutions in unsupervised and nonlinear signal ggsing. depicted in Fig. 1 corresponds to a MIMO transnoissind
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In this case, the theoretical framework comes fthenwell-
known Benveniste-Goursat-Rouget (BGR) [6] and Shalv
(k) Channel (0 —» Equalizer 0 Weinstein (SW) [7] theorems. Now, these resultsumes

: : that the channel and the equalizer constituteeatisystem.
However, nonlinear equalizers can provide equéalitiyveen
the distribution of the transmitted and receiveghals, even
if the recovered symbols do not correspond to the
equalization one. The channel is considered tdrteai, so transmitted ones. This is simply demonstrated bg th

s1(k) 14(K) —» $1(k)

(k)

Figure 1: Convolutive mixture and equalization.

that the received signals can be expressed as: following example. _ o
. Example 1:Let us consider the equalizer in Fig. 1 as a
e . nonlinear device, the input vector of which is givey
r(k)= ;His(k_')+“(k)" @) rk=[r"(K) ... r'(k-m1)]". The channel states are defined

as the possible values thigk) can assume in the absence of
whereH; denotes the mixing matrix, with dimensiodgN,  noise. Mathematically, the channel states vectgivisn by:
associated with time instants(k) represents the vector with _
the sourcespn(k) the noise vector and. is the channel C, = E[I’f (k)l S](k)] . (2),
memory. The simpler case of SISO equalization$wlden
M =N= 1. _ _ _ “where “S'j(k)z[sT(k) b sT(k—nC —m—1)]T denotes a

The use of unsupervised (or blind) strategies is . L ‘ .

motivated by the well-known systemic advantages irposs!ble combmatlon of transmitted symbols. Letnmv
avoiding supervision, while the interest in nontine consider the particular case of a SISO channel tréthsfer

equalizers is due to their abilities in dealing hwievere function H(Z):O'S +2' and a nonlineTar equalizgr With input
channels and preventing noise enhancement. vector given byr¢(k) = [r(k) r(k-1]'. ~Assuming binary

However, there is a twofold arduousness in handlin@ansm'ss'on' there are 8 possible channel states) one

! : : T
with unsupervised and nonlinear optimization. Fjrsthe corresponding to a possible triplgK) s(k-1) sk-2)] . The

general theoretical framework of unsupervised siignarOIe of a nonlinear equalizer is mapping each chhatate

processing assumes linear mixture (channels) angto a recovgred symbgf(k).. The que3|an . equallzer
deconvolution (equalizers). Secondly, for nonlingavices, prowdgs_ optimal - mapping n that it maximizes the
optimality is provided by the Bayesian solution,e th probability of_the correct recovering of a trangetdtsymbol
practical implementation of which assumes a supedvi S(k). Concerning the present e>_<amp|e, T:_;\ble 1 sholibel
training period. That is, besides the classical Wiebased chan_nel states, and two possible mappirigk) and f(k),
approach, it can be noted that the most usual arfOVided by nonlinear structures.

analytically tractable solutions concern eitheeéinfilters in

unsupervised mode or else nonlinear structurestedapith Table 1: Channel states, transmitted signals, equalizent;xand

recovered symbols of Example 1.

the aid of a pilot signal. Such reasoning will betailed in PRI
2.1. Fundamental results on unsupervised signal 2 i i 11 ig %E; 1 11
processing c | 1 -1 1 05| 05 1 1
. . Cy 1 -1 -1 -0.5 -1.5 1 -1
A seldom discussed but rather clear statementas th—c 1 1 05 15 1 1
blind source separations (BSS) of convolutive nrieucan G | -1 1 1 05 05 1 1
be viewed as the most general problem in unsupetvis| ¢, | -1 1 1 15 05 1 1
signal processing. Such problem can be particd@drito cg | -1 -1 -1 15| -15 -1 1

MIMO equalization, to multiuser processing [3] aekn to
SISO equalization, where the channel performs only Since the channel states are equiprobable, fagdhand
convolution and no mixtures take place. fo(k) have the same statistical distribution, whiclalso the

It is well known that a solid theoretical framewdidr  same of the original transmitted signsk). However, the
BSS is provided by independent component analySi8)(  first one corresponds to the output of the Bayesigumalizer,
[4]. In addition, Taleb and Jutten [5] have showattiCAis  which recovers the transmitted signal, while theosd
valid when the whole scheme in Fig. 1 constitutdsi@ar equalizer does not provide correct retrieval fory an
system, but not necessarily in the general nonliceae. In  considered delay.
this case, independence between the output sigoals not Hence, the theoretical foundations in BSS and blind
guarantee a correct retrieval of the original sesirc equalization, as well as their resulting algorithen not be

It is curious to show that an analogous result ban generally applied to provide optimal solutionslie tontext
obtained for the particular case of SISO blind digaton.
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of nonlinear processing. Then, our next task issewsrch of
other classes of methods.

2.2 - Nonlinear prediction and equalization

The concept of prediction is present in many ajpibns
of signal processing techniques [1]. It consistestimating

3. MINIMUM MEAN SQUARED ERROR
PREDICTOR

Let us consider a SISO predictor in the presentiaec
According to estimation theory, the MMSE estimafor
r(k) given the vector of past sample&) = [r(k-dr-1) ... r(k-
m1)]", i.e., the ¢-+1)-step forward predictor, is given by the

a given sample(k), based on the information provided by aconditional mean:

set of available samples. This idea can be expidsse
X(k) = Py (K)]. 2

where X(k) is the predicted signal. If the vectgk)

contains past samplegk-i), i = 1, 2, ...K, the operation is
called forward prediction. Backward prediction esponds

to estimate the sampl€k) from a set of posterior samples,

while using past and posterior available data tonege a
given sample correspond to the problem of intetpa In

all cases,P[.] express the mapping performed by the

predictor and the prediction error is defined by:

- (k) = x{k) - %{k) = x{k) - Plx(k]] ®)

The design of the optimal predictor can be cardetby
means of the minimization of the mean square ptiedic
error. In the particular case of linear predictid?®,] is
implemented by a linear FIR filter and its coefficts can be
calculated by the Wiener procedure.

A number of previous works has established intargst
relationships between prediction and equalizationthe
SISO context, it is known that a linear forward giction-
error filter is able to equalize minimum-phase aies [1],
while linear backward prediction-error filters agéfective
only for maximum-phase ones [1].

prediction-error equalizers, with linear [8] andhlinear [9]
configurations. The basic idea is illustrated ig.F.

Forward
Predictor
r(k)

Figure 2: Cascaded prediction-error equalizer.

=
=

Backward
Predictor

Linear prediction principles have also been ingzgtd
in many important works on SIMO and MIMO equalipati
as [10] and [11] to mention a few.
minimum-phase restriction is weakened to one altbat
absence of common zeros between the subchannels.

However, Cavalcante et al.
restrictions over the phase response of the chararelbe
overcome by using nonlinear prediction. Moreovehew
considering a cascade configuration, the nonlipeadictor
can further improve the efficacy of the equaliZéris result
provided motivation to the present work in ordetdok for
an optimal solution for unsupervised nonlinear digation
based on the prediction-error principle.

These propertie
motivated a series of works dealing with cascaded

In this casee th

[12] showed that the

K)=E[r(k)Ir, (k)] (5)

Hence, in order to determine the MMSE estimatois it
necessary to obtain the conditional distributgn(k)|r¢(k)),
or equivalently, using Bayes theorem, the jointribstion
of p(r(k), r«(k)) as well ap(r¢(K)).

The distribution of ¢(k) can be expressed by:

gMne-di-2

oli)= el e, P )

whereS is the cadinality of the transmitted signal alpstab
The time index is ommited to simplify the notatidn.(6),

p(r¢lcy) denotes the conditional distribution ofgiven the
channel statec; with dimension ift+d-1). Due to the

fMMSE(r f (

(6)

presence of additive gaussian noig€;¢c,) will be a
normal distribution centered at, i.e.,
={m-d¢ -1, 2
p(r lc )-(27102)( )ex —Hrf_caj @)
f a |~ n 2
20,

Since ¢, are equiprobable vectors, with probablity
~ _2), substituting (6) in (7) yields:

~(m-a¢ 1)
() (S”E"Z)

m+n.—d; -2
S e =1

—(m+nc

2

_ Hrf ;J _ (8)

p(rf): 20
n

eX|

Assume thatk<(n-1) so thatr andr; are correlated and
hence r can be predicted front;. Now, using total
probability and the fact that and r; are conditionally
independent giveq, p(r, ry) is given by

(¢

p(r’rf) = > p(r,rflcj)EP(cj)

p(r |Cj)Ep(rf |Cj)EP(CJ)

=1
whereg; is a channel estate vector of dimensio{note that
Cy is only a part o). Using (7), it is possible to notice that

N —
mncl

©)

) o

20,7

p(r |cj): (ij)_% fexpg —
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and

p(rf|cj):(2nu,f)_ 2 [@X _Tj}j’ (11)

wherec =[c, T . Again, due to the

jd;+1 Cj,df+2 Cj,m—l]
fact that the states are equiprobable, iRg)=S™""),
substituting (10) and (11) in (9), yields

e 3 ) (e ) (el
p(r’r'):w z exp — 202 [exp - 202 - ( )

=1 n n

Dividing (12) by (8) we finally obtain:

1 (Smgil)ex —‘r_cigo‘z &x —er_?HZ
L R 10 I

p(l’||’,) +1 mn.-d, -2 2 ! 13
S (S id, )ex{_rf } ] (13)

2
20,

and using this result in (5), it is possible to abtthe
following expression for the MMSE estimator:

“ : 20}
fumsell ¢ Cplr [ry dr = 2 14
b= by 49
pve P AT
,Z:; 20}

gir+

d+lz n,0 1 (15)

where

with €, =C,

The derivation of the MMSE backward predictor falkban
analogous proof. Now we look for a suitable nordine
structure to be associated to the optimal forwaedljgtor in
(14), and then to the analogous backward predistothat a
nonlinear equalizer can be implemented in accorelavith
the idea depicted in Fig. 2.

Our investigations have been oriented to the fuzz

structures, which were successfully applied in ey
works [13] [14] in different equalization problemEhe aim
of the following section is to use the fuzzy fil&ructure to
implement a predictor-based equalizer and demdesthe
optimality of this approach.

4. THEMMSE FUZZY PREDICTOR

A fuzzy filter is a nonlinear filtering structur@@owed with
universal approximation capability. It is capablef
processing information in conformity with a basfdagical
rules that employ non-binary membership functicluzzy

sets) [15]. If these membership functions are Gaunss
product is the inference operator, and centroid
defuzzification is utilized, it is possible to oltathe
following input-output mapping:

ZW. ”ex;{- i ] o

. | \2
& D X; =Cj,
exy -

|Z:1: j= [{ 20'12| J

whereN, andm are respectively the numbers of rules and
inputs of the fuzzy systeng;, andczj,. are respectively the
centers and variances of the Gaussian membership
functions, andy are the output weights.

By comparing equations (14) and (16) and expanttieg
norm in (14) in a product of exponentials, it candibserved
that the input-output mappings of the MMSE prediaod
the fuzzy filter have a structural equivalence. rEfare, it is
possible to obtain the MMSE predictor using a fufiter
by properly setting its parameters.

To obtain the MMSE di+1)-step forward predictor, the
parameters of the fuzzy filter should be set adogrdo
(14), so that the input-output mapping of the fufiltgr is

moe ((r(k=d, --c, f
- {z.;J

f (k)= 17)

j=1 1=t 20'”

where the weightej; are given by (15).
It can be shown that the one step backward MMSE
predictor is equivalent to the fuzzy filter of mapyp

nooma ([ (rk-D-c, F
2w, ex;{—zaJ]
f(k)=— ” [ I)ZJ” F
N m,-L rk-1-c,,
;”exg{—zcjﬂz J

where m, is the number of inputs of the filter and the
weights are given by

1 S
Wj :gzcnm] ) (19)
n=1

with [Cho Cn1...Chmba] = Caj-

The cascaded prediction-error equalizer can beirwia
)l]')y combining a fuzzy forward predictor with a backd
one, so that the output of the forward predictiamore
equalizer be used as the input of the backwardigired
error equalizer.

(18)

5. TRAINING ALGORITHM

In this section, we discuss the training procedused to
obtain the parameters of the fuzzy predictors. 1IA) (and
(18), it is noticeable that the free parameterstlagechannel
statesg,;, which are the centers of the Gaussian membership
functions; the noise variancaqz; and the output weights,
w;. The training process may be divided into two idigt
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stages: estimating the channel states and noigneer and
finding the adequate set of output weights.

The problem of estimating the channel states from t

received data is fundamentally an unsupervisedtesiing
problem. To perform this task, we used the ILS digm
[16]. This algorithm combines an evolutionary-baggabal

linear FIR predictors used in the linear cascadedlption
error equalizer represent the MMSE linear solution.

Fig. 3 shows the average bit error rate (BER) cumvie
the equalizers. It can be observed that the pedonoa of
the cascaded-prediction error equalizer, using NMSE
predictors, is close to that of the Bayesian egealiThe

search and a local search strategy, performed in osame occurs for the trained cascaded predictiar-err

implementation by the k-means algorithm [16].
conjunction of these features confers to the ILgoad
balance between exploration and exploitation of gbarch
space, which constitutes an essential featurehforcorrect
estimation of the channel states.

Once we have the channel states, it is straigh#oivwo

Theequalizer using fuzzy predictors, which confirms tood

performance of the proposed training strategy. BE® of
the linear cascaded prediction-error equalizer edse).1,
even for high values of SNR, which renders evidimt
unsuitableness of this structure in the presene.cage
linear equalizer performs slightly better than ti@nlinear

evaluate the dispersion of the data around thend arcascaded prediction-error equalizer for low valoESNR,

therefore obtain the noise variance.

but it decreases significantly for SNR values abbveB.

Given the centers and noise variance, the problem o

determining the weights of the fuzzy predictor bues

linear in the parameters, which allows us to resoi vast
amount of tools and results belonging to the ctadsi
adaptive filtering framework. In our implementatjome use
an RLS algorithm [14] to adapt the weights of tlhezy

predictor.

The training procedure of the fuzzy predictor can

therefore be summarized in three steps: i) chastaks
estimation using ILS; ii) noise variance estimatiby
evaluating the data dispersion around the stati;
adaptation of the output weights using the RLS ritiga.
For the cascaded prediction-error equalizer, thmitig is
performed first for the forward predictor and thepeated
for the backward predictor using the forward prédic
error signal.

6. SISO CHANNEL EQUALIZATION

In this section, we present simulation results ¢seas the
performance of the proposed prediction-error eqaadi for
SISO equalization. The transmitted signal was ssegdo
belong to a binary alphabet, {-1;+1}, and the tfans
function of the channel isl(2) = 0.5 + 0.Z* + 0.5 Since
the second coefficient is the most significant, sscaded
prediction-error equalizer witm = 5, m, = 4 andd; = 1 was
used. To train the fuzzy predictors, 8000 samplieshe

received signal were used. We compare the restiltkeo
proposal with three other solutions: the MMSE Fifkear

equalizer, the Bayesian equalizer and the lineacamed-
prediction error equalizer. We used an FIR filteithn8

coefficients to implement the linear MMSE equaljzgnce

10
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Figure 3: BER curves for different equalization approachesl
channeH(z) = 0.5 + 0.7 + 0.52

7. EXTENSION TO SOURCE SEPARATION (MIMO
EQUALIZATION)

The proposed approach can be extended to the pmoble
of MIMO channel equalization, wittM=N>1. The idea is
depicted in Fig. 4, where a set of forward preditterror
filters is employed.

Mernoryless Channsl

= F1(k)

s10k) —1

sy(k)

Channel

oty

this is the number of samples of the received s$igna Figure4: Prediction-error filter approach for MIMO chansel

necessary to obtain one output of the cascadedcpoed

error equalizer. Its equalization delay was setobte to
obtain the best possible performance. The numberpoits
of the Bayesian equalizer was set to 4 so thabverall
computational complexity is equivalent to that dfet
proposed cascaded prediction-error  equalizer;

equalization delay was set to one for best perfaceaThe

Let the input of the prediction filter be composddgast
samples of all received signals, i.e.,

r's =[r1(k),---,r1(k—m) i Ty (k)"“'rM (k_m)]T' (20)

itdhe MMSE estimator is also given by (5), and ite\dgion
follows the steps in (6)-(15), with a few differ&sc
regarding the number of possible channel stateschwh
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depends on the number of sources and can be caalsligle
higher than in the SISO scenario. Therefore, thmesa
training method explained in Section 5 is also @fée for
the MIMO case.

However, the main difference is that the nonlirfdars
will only be able to eliminate the convolutive aspef the
channel [17]. In other words, the outputs will piiwalent
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