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ABSTRACT 
 
The present work deals with the research of optimal 
solutions in unsupervised and nonlinear signal processing. 
The proposed framework is based on nonlinear prediction, 
to be implemented by a fuzzy filter structure. Our main 
result consists in establishing the optimality of the approach 
by showing the equivalence between the minimum mean 
squared error estimator and the fuzzy predictor. The result is 
then applied in the contexts of SISO equalization and 
convolutive source separation (MIMO equalization). We 
also propose a strategy for the updating of the unsupervised 
nonlinear equalizer. Simulation results confirm the 
effectiveness of the proposal in SISO and MIMO scenarios. 
 

Index Terms— blind equalization, blind source 
separation, fuzzy filter, prediction-error filter. 
 

1. INTRODUCTION 
 

Over the last decades, classical approaches in statistical 
signal processing have encountered a significant success in 
several applications, especially due to their well-established 
concepts as well as the efficiency and simplicity of a 
number of algorithms. On the other hand, it must be noted 
that the solution of some recent and challenging problems is 
rather limited, even unfeasible, if classical assumptions are 
considered. As a consequence, advanced researches in 
signal processing have been characterized by the adoption of 
some new theoretical frameworks. In particular we can 
mention a sort of tripod formed by the growing interest on 
nonlinear processing, the disuse of the classical Gaussian 
hypothesis and the consequent use of higher order statistics 
[1] [2].  

Both classical and advanced approaches seek a 
fundamental purpose in signal processing techniques, that is, 
to perform optimally. About sixty years ago, such objective 
was attained by Kolmogorov and Wiener, by using the 
classical linearity and Gaussianity hypotheses together with 
linear algebra and functional analysis tools. However, this 
fundamental task faces increasing difficulties if classical 
assumptions are discarded.  

The present work deals with the research of optimal 
solutions in unsupervised and nonlinear signal processing. 

Such problem is present in important applications, like 
channel equalization and identification, source separation, 
data clustering and others. Our proposed framework is based 
on nonlinear prediction, to be implemented by a fuzzy filter 
structure. Our main result consists in establishing the 
optimality of the approach by showing the equivalence 
between the minimum mean squared error (MMSE) 
estimator and the fuzzy predictor. The result is then applied 
in the contexts of single-input/single-output (SISO) 
equalization and convolutive source separation (multiple-
input/multiple-output (MIMO) equalization). Also, a 
technique for both SISO and MIMO equalizers adaptation is 
proposed. 

This paper is organized as follows. In section 2, we 
present a discussion on unsupervised and nonlinear 
equalization. The purpose of this section is to render evident 
that the fundamental results on unsupervised signal 
processing are not applicable when nonlinear devices are 
used; so we present an alternative approach based on 
nonlinear prediction. The optimal MMSE SISO predictor, 
according to the estimation theory, is derived in section 3. 
Then, in section 4, we introduce the fuzzy prediction- error 
filter and prove its optimality by demonstrating its 
equivalence with the MMSE solution. As a final 
contribution, an updating strategy is proposed in section 5; it 
combines an iterated local search (ILS) clustering algorithm 
with a classical recursive least squares (RLS) algorithm. 
Section 6 brings some simulation results to evaluate the 
proposed method in the particular case of SISO 
equalization; comparisons with the Bayesian optimal 
criterion are provided. In section 7, the proposed approach is 
extended to the case of convolutive mixtures, or rather 
MIMO equalization, and simulation results in that context 
are provided. Finally, our conclusions are stated in section 8. 

 
2. UNSUPERVISED AND NONLINEAR 

EQUALIZATION 
 

Fig. 1 illustrates a convolutive mixture scheme followed 
by a separation and deconvolution device. 

In the present work we assume the input signals si(k) to 
have the same statistical distributions as well as to belong to 
a finite alphabet. Under these assumptions, the system 
depicted in Fig. 1 corresponds to a MIMO transmission and  
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Figure 1: Convolutive mixture and equalization. 
 
equalization one. The channel is considered to be linear, so 
that the received signals can be expressed as:  
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where Hi denotes the mixing matrix, with dimensions MxN, 
associated with time instant i, s(k) represents the vector with 
the sources, ηηηη(k) the noise vector and nc is the channel 
memory.  The simpler case of SISO equalization holds when 
M =N= 1.  

The use of unsupervised (or blind) strategies is 
motivated by the well-known systemic advantages in 
avoiding supervision, while the interest in nonlinear 
equalizers is due to their abilities in dealing with severe 
channels and preventing noise enhancement. 

However, there is a twofold arduousness in handling 
with unsupervised and nonlinear optimization. Firstly, the 
general theoretical framework of unsupervised signal 
processing assumes linear mixture (channels) and 
deconvolution (equalizers). Secondly, for nonlinear devices, 
optimality is provided by the Bayesian solution, the 
practical implementation of which assumes a supervised 
training period. That is, besides the classical Wiener-based 
approach, it can be noted that the most usual and 
analytically tractable solutions concern either linear filters in 
unsupervised mode or else nonlinear structures adapted with 
the aid of a pilot signal. Such reasoning will be detailed in 
the sequel. 
 
2.1. Fundamental results on unsupervised signal 
processing 
 

A seldom discussed but rather clear statement is that 
blind source separations (BSS) of convolutive mixtures can 
be viewed as the most general problem in unsupervised 
signal processing. Such problem can be particularized to 
MIMO equalization, to multiuser processing [3] and even to 
SISO equalization, where the channel performs only 
convolution and no mixtures take place. 

It is well known that a solid theoretical framework for 
BSS is provided by independent component analysis (ICA) 
[4]. In addition, Taleb and Jutten [5] have shown that ICA is 
valid when the whole scheme in Fig. 1 constitutes a linear 
system, but not necessarily in the general nonlinear case. In 
this case, independence between the output signals does not 
guarantee a correct retrieval of the original sources. 

It is curious to show that an analogous result can be 
obtained for the particular case of SISO blind equalization. 

In this case, the theoretical framework comes from the well-
known Benveniste-Goursat-Rouget (BGR) [6] and Shalvi-
Weinstein (SW) [7] theorems. Now, these results assume 
that the channel and the equalizer constitute a linear system. 
However, nonlinear equalizers can provide equality between 
the distribution of the transmitted and received signals, even 
if the recovered symbols do not correspond to the 
transmitted ones. This is simply demonstrated by the 
following example. 

Example 1: Let us consider the equalizer in Fig. 1 as a 
nonlinear device, the input vector of which is given by 
rf(k)=[rT(k) … rT(k-m-1)]T. The channel states are defined 
as the possible values that rf(k) can assume in the absence of 
noise. Mathematically, the channel states vector is given by: 

( ) ( )[ ]kkE jfj src ~|= . (2), 

where ( ) ( ) ( )[ ]Tc
TT

j mnkkk 1~ −−−= sss ⋯ denotes a 

possible combination of transmitted symbols. Let us now 
consider the particular case of a SISO channel with transfer 
function H(z)=0.5 + z-1 and a nonlinear equalizer with input 
vector given by rf(k) = [r(k) r(k-1)]T.  Assuming binary 
transmission, there are 8 possible channel states, each one 
corresponding to a possible triple [s(k) s(k-1) s(k-2)]T. The 
role of a nonlinear equalizer is mapping each channel state 
into a recovered symbol f(k). The Bayesian equalizer 
provides optimal mapping in that it maximizes the 
probability of the correct recovering of a transmitted symbol 
s(k). Concerning the present example, Table 1 shows all the 
channel states, and two possible mappings, f1(k) and f2(k),  
provided by nonlinear structures. 
 
Table 1: Channel states, transmitted signals, equalizer inputs and 
recovered symbols of Example 1. 

rf
T(k) 

cj s(k) s(k-1) s(k-2) 
r(k) r(k-1) 

f1(k) f2(k-1) 

c1 1 1 1 1.5 1.5 1 -1 
c2 1 1 -1 1.5 -0.5 1 1 
c3 1 -1 1 -0.5 0.5 1 1 
c4 1 -1 -1 -0.5 -1.5 1 -1 
c5 -1 1 1 0.5 1.5 -1 1 
c6 -1 1 -1 0.5 -0.5 -1 -1 
c7 -1 -1 1 -1.5 0.5 -1 -1 
c8 -1 -1 -1 -1.5 -1.5 -1 1 

 
Since the channel states are equiprobable, both f1(k) and 

f2(k) have the same statistical distribution, which is also the 
same of the original transmitted signal, s(k). However, the 
first one corresponds to the output of the Bayesian equalizer, 
which recovers the transmitted signal, while the second 
equalizer does not provide correct retrieval for any 
considered delay. 

Hence, the theoretical foundations in BSS and blind 
equalization, as well as their resulting algorithms, can not be 
generally applied to provide optimal solutions in the context 
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of nonlinear processing. Then, our next task is the search of 
other classes of methods. 

 
2.2 - Nonlinear prediction and equalization 

 
The concept of prediction is present in many applications 

of signal processing techniques [1].  It consists in estimating 
a given sample x(k), based on the information provided by a 
set of available samples. This idea can be expressed by: 

)]([)(ˆ kPkx χ= . (2) 

where )(ˆ kx is the predicted signal. If the vector χχχχ(k) 

contains past samples x(k-i), i = 1, 2, ..., K, the operation is 
called forward prediction. Backward prediction corresponds 
to estimate the sample x(k) from a set of posterior samples, 
while using past and posterior available data to estimate a 
given sample correspond to the problem of interpolation. In 
all cases, P[.] express the mapping performed by the 
predictor and the prediction error is defined by: 

( ) ( ) ( ) ( ) ( )[ ]kPkxkxkxkeP χ−=− ˆ= . (3) 

The design of the optimal predictor can be carried out by 
means of the minimization of the mean square prediction 
error. In the particular case of linear prediction, P[.] is 
implemented by a linear FIR filter and its coefficients can be 
calculated by the Wiener procedure.  

A number of previous works has established interesting 
relationships between prediction and equalization. In the 
SISO context, it is known that a linear forward prediction-
error filter is able to equalize minimum-phase channels [1], 
while linear backward prediction-error filters are effective 
only for maximum-phase ones [1]. These properties 
motivated a series of works dealing with cascaded 
prediction-error equalizers, with linear [8] and nonlinear [9] 
configurations. The basic idea is illustrated in Fig. 2. 
 

 

Figure 2: Cascaded prediction-error equalizer. 

Linear prediction principles have also been investigated 
in many important works on SIMO and MIMO equalization, 
as [10] and [11] to mention a few. In this case, the 
minimum-phase restriction is weakened to one about the 
absence of common zeros between the subchannels. 

However, Cavalcante et al. [12] showed that the 
restrictions over the phase response of the channel can be 
overcome by using nonlinear prediction. Moreover, when 
considering a cascade configuration, the nonlinear predictor 
can further improve the efficacy of the equalizer. This result 
provided motivation to the present work in order to look for 
an optimal solution for unsupervised nonlinear equalization 
based on the prediction-error principle. 

3. MINIMUM MEAN SQUARED ERROR 
PREDICTOR 

 
Let us consider a SISO predictor in the present section. 

According to estimation theory, the MMSE estimator for 
r(k) given the vector of past samples rf(k) = [r(k-df-1) … r(k-
m-1)]T, i.e., the (df+1)-step forward predictor, is given by the 
conditional mean: 

 ( )( ) ( ) ( )[ ] .| kkrEkf ffMMSE rr =  (5) 

Hence, in order to determine the MMSE estimator, it is 
necessary to obtain the conditional distribution p(r(k)|rf(k)), 
or equivalently, using Bayes theorem, the joint distribution 
of p(r(k), rf(k)) as well as p(rf(k)). 

The distribution of rf(k) can be expressed by: 

( ) ( ) ( )∑
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where S is the cadinality of the transmitted signal alphabet. 
The time index is ommited to simplify the notation. In (6), 
p(rf|caj) denotes the conditional distribution of rf given the 
channel state caj with dimension (m-df-1). Due to the 
presence of additive gaussian noise, p(rf|caj)  will be a 
normal distribution centered at caj, i.e.,  
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Since caj are equiprobable vectors, with probablity 
( )2−−+− fdcnm

S , substituting (6) in (7) yields: 
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Assume that df<(nc-1) so that r and rf are correlated and 
hence r can be predicted from rf. Now, using total 
probability and the fact that r and rf  are conditionally 
independent given cj, p(r, rf) is given by 

( )
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where cj is a channel estate vector of dimension m (note that 
caj is only a part of cj). Using (7), it is possible to notice that 
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and 
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fact that the states are equiprobable, i.e., P(cj)=S-(m+n
c
-1), 

substituting (10) and (11) in (9), yields 
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Dividing (12) by (8) we finally obtain: 
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and using this result in (5), it is possible to obtain the 
following expression for the MMSE estimator: 
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where  
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with 
jan cc =ˆ . 

The derivation of the MMSE backward predictor follows an 
analogous proof. Now we look for a suitable nonlinear 
structure to be associated to the optimal forward predictor in 
(14), and then to the analogous backward predictor, so that a 
nonlinear equalizer can be implemented in accordance with 
the idea depicted in Fig. 2.  

Our investigations have been oriented to the fuzzy 
structures, which were successfully applied in previous 
works [13] [14] in different equalization problems. The aim 
of the following section is to use the fuzzy filter structure to 
implement a predictor-based equalizer and demonstrate the 
optimality of this approach. 
 

4. THE MMSE FUZZY PREDICTOR 
 
A fuzzy filter is a nonlinear filtering structure endowed with 
universal approximation capability. It is capable of 
processing information in conformity with a basis of logical 
rules that employ non-binary membership functions (fuzzy 

sets) [15]. If these membership functions are Gaussian, 
product is the inference operator, and centroid 
defuzzification is utilized, it is possible to obtain the 
following input-output mapping: 
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where Nr and m are respectively the numbers of rules and 
inputs of the fuzzy system, cj,l and σ2

j,l  are respectively the 
centers and variances of the Gaussian membership 
functions, and wl are the output weights. 

By comparing equations (14) and (16) and expanding the 
norm in (14) in a product of exponentials, it can be observed 
that the input-output mappings of the MMSE predictor and 
the fuzzy filter have a structural equivalence. Therefore, it is 
possible to obtain the MMSE predictor using a fuzzy filter 
by properly setting its parameters. 

To obtain the MMSE (df+1)-step forward predictor, the 
parameters of the fuzzy filter should be set according to 
(14), so that the input-output mapping of the fuzzy filter is 
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where the weights wj are given by (15). 
It can be shown that the one step backward MMSE 

predictor is equivalent to the fuzzy filter of mapping 
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where mb is the number of inputs of the filter and the 
weights are given by 

,
1

= ,
1=

bmn

S

n
j c

S
w ∑  (19) 

with [cn,0  cn,1 … cn,mb-1] = caj. 
The cascaded prediction-error equalizer can be obtained 

by combining a fuzzy forward predictor with a backward 
one, so that the output of the forward prediction error 
equalizer be used as the input of the backward prediction 
error equalizer. 

 
5. TRAINING ALGORITHM 

 
In this section, we discuss the training procedure used to 
obtain the parameters of the fuzzy predictors. In (17) and 
(18), it is noticeable that the free parameters are the channel 
states, caj, which are the centers of the Gaussian membership 
functions; the noise variance, ση

2; and the output weights, 
wj. The training process may be divided into two distinct 
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stages: estimating the channel states and noise variance, and 
finding the adequate set of output weights. 

The problem of estimating the channel states from the 
received data is fundamentally an unsupervised clustering 
problem. To perform this task, we used the ILS algorithm 
[16]. This algorithm combines an evolutionary-based global 
search and a local search strategy, performed in our 
implementation by the k-means algorithm [16]. The 
conjunction of these features confers to the ILS a good 
balance between exploration and exploitation of the search 
space, which constitutes an essential feature for the correct 
estimation of the channel states. 

Once we have the channel states, it is straightforward to 
evaluate the dispersion of the data around them, and 
therefore obtain the noise variance. 

Given the centers and noise variance, the problem of 
determining the weights of the fuzzy predictor becomes 
linear in the parameters, which allows us to resort to a vast 
amount of tools and results belonging to the classical 
adaptive filtering framework. In our implementation, we use 
an RLS algorithm [14] to adapt the weights of the fuzzy 
predictor. 

The training procedure of the fuzzy predictor can 
therefore be summarized in three steps: i) channel states 
estimation using ILS; ii) noise variance estimation by 
evaluating the data dispersion around the states; iii) 
adaptation of the output weights using the RLS algorithm. 
For the cascaded prediction-error equalizer, the training is 
performed first for the forward predictor and then repeated 
for the backward predictor using the forward prediction 
error signal. 

 
6. SISO CHANNEL EQUALIZATION 

 
In this section, we present simulation results to assess the 
performance of the proposed prediction-error equalizers for 
SISO equalization. The transmitted signal was supposed to 
belong to a binary alphabet, {-1;+1}, and the transfer 
function of the channel is H(z) = 0.5 + 0.7z-1 + 0.5z-2. Since 
the second coefficient is the most significant, a cascaded 
prediction-error equalizer with m = 5, mb = 4 and df = 1 was 
used. To train the fuzzy predictors, 8000 samples of the 
received signal were used. We compare the results of the 
proposal with three other solutions: the MMSE FIR linear 
equalizer, the Bayesian equalizer and the linear cascaded-
prediction error equalizer. We used an FIR filter with 8 
coefficients to implement the linear MMSE equalizer, since 
this is the number of samples of the received signal 
necessary to obtain one output of the cascaded prediction-
error equalizer. Its equalization delay was set to one to 
obtain the best possible performance. The number of inputs 
of the Bayesian equalizer was set to 4 so that its overall 
computational complexity is equivalent to that of the 
proposed cascaded prediction-error equalizer; its 
equalization delay was set to one for best performance. The 

linear FIR predictors used in the linear cascaded-prediction 
error equalizer represent the MMSE linear solution. 

Fig. 3 shows the average bit error rate (BER) curves of 
the equalizers. It can be observed that the performance of 
the cascaded-prediction error equalizer, using the MMSE 
predictors, is close to that of the Bayesian equalizer. The 
same occurs for the trained cascaded prediction-error 
equalizer using fuzzy predictors, which confirms the good 
performance of the proposed training strategy. The BER of 
the linear cascaded prediction-error equalizer exceeds 0.1, 
even for high values of SNR, which renders evident the 
unsuitableness of this structure in the present case. The 
linear equalizer performs slightly better than the nonlinear 
cascaded prediction-error equalizer for low values of SNR, 
but it decreases significantly for SNR values above 15dB. 
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Figure 3: BER curves for different equalization approaches and 
channel H(z) = 0.5 + 0.7z-1 + 0.5z-2. 
 
7. EXTENSION TO SOURCE SEPARATION (MIMO 

EQUALIZATION) 
 

The proposed approach can be extended to the problem 
of MIMO channel equalization, with M=N>1. The idea is 
depicted in Fig. 4, where a set of forward prediction-error 
filters is employed.  

 
 

Figure 4: Prediction-error filter approach for MIMO channels. 
 

Let the input of the prediction filter be composed of past 
samples of all received signals, i.e., 

( ) ( ) ( ) ( )[ ]TMMf mkrkrmkrkr −− ,,,,= 11 ⋯⋯⋯r . (20) 

The MMSE estimator is also given by (5), and its derivation 
follows the steps in (6)-(15), with a few differences 
regarding the number of possible channel states, which 
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depends on the number of sources and can be considerably 
higher than in the SISO scenario. Therefore, the same 
training method explained in Section 5 is also effective for 
the MIMO case. 

However, the main difference is that the nonlinear filters 
will only be able to eliminate the convolutive aspect of the 
channel [17]. In other words, the outputs will be equivalent 
to those of a memoryless system, also known as an 
instantaneous mixing system. In this context, to recover the 
original signals, one can rely on blind source separation 
tools, as the independent component analysis [4]. For this 
task, several algorithms have been proposed in the literature. 
In this work, we employ the FastICA algorithm [18].  

Fig. 5 illustrates the results obtained with the nonlinear 
prediction approach. For this example, a system determined 
by two square matrices (A0, A1) was considered, and the two 
sources were drawn from a BSPK constellation.  

Fig. 5(a) shows the joint distribution of the prediction 
errors. It is possible to notice that the points are gathered 
around the vertices of a parallelogram, which corresponds to 
the action of an instantaneous mixture on the original 
distribution of the sources. This indicates that the 
prediction-error filters were able to eliminate the 
convolutive aspect of the channel. 

The next step was to apply the FastICA algorithm on the 
error signals. The distribution of the resulting signals is 
depicted in Fig. 5(b), where it can be seen that the original 
distribution was recovered.  

 

 
(a) 

 
(b) 

Figure 5: Joint distribution of (a) the prediction errors, 
representing a channel without memory, and (b) the signals 
obtained after applying FastICA. 
 

8. CONCLUSIONS 
 

Many recent researches in signal processing have been 
characterized by the adoption of some new theoretical 
frameworks. In this context, unsupervised and nonlinear 
signal processing becomes one of the major focuses of 
interest. The present paper aims to contribute with the field 
by proposing the MMSE fuzzy predictor as an optimal 
solution for blind nonlinear equalization in both SISO and 
MIMO scenarios. An updating strategy was also proposed. 
To perform optimally in an unsupervised and nonlinear 
context may be an important acquisition for different 
applications in modern signal processing. This work intends 
to show a first set of results; some theoretical aspects as well 
as other potential applications can still be explored.  
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