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Abstract—A Sparse Learning via Iterative Minimization
(SLIM) approach is here used for the High Range Resolution
(HRR) profile reconstruction. Stepped Frequency (SF) waveforms
are also used, to achieve high range resolution while maintaining
a narrow instantaneous bandwidth. The SLIM based procedure
includes the Bayesian Information Criterion (BIC), for selecting
active scatterers in a sparse scenario, as well as, for making the
procedure as much as possible user parameter free. The carried
out analysis shows that the SLIM based procedure presents
higher accuracy in the HRR profile recovery when compared to
other widely used techniques, i.e. the Iterative Adaptive Approach
(IAA).

Index Terms—High Resolution Range Profile, Stepped Fre-
quency Radar, Cognition, Sparse Learning.

I. INTRODUCTION

Automatic Target Recognition (ATR) [1], [2], namely the
capability of a radar system to identify and characterize targets,
has attracted the attention of many researchers during the
last years [2]–[4]. High Range Resolution (HRR) profiling
[5], [6], i.e., a one-dimensional measurement of target radar
reflectivity along the slant range direction with respect to
a certain radar line-of-sight (LOS) plays an important role
in ATR. Unfortunately, a large instantaneous bandwidth is
necessary to achieve high range resolution, representing a
limiting factor from a practical point of view.

A valuable mean to overcome this drawback is provided
by the Stepped Frequency (SF) technique which comprises a
probing waveform strategy allowing to achieve wide or ultra-
wide bandwidth, while maintaining a narrow instantaneous
receiver bandwidth, easing the A/D sampling requirements,
and reducing system complexity and cost [1]. In the SF
approach, a series of narrowband pulses, which are stepped in
frequency, is transmitted. There are several frequency hopping
patterns that can be selected and the most popular assumes a
linear law.

Several algorithms for estimating the unknown model pa-
rameters related to the target range profile have received
significant attention in radar signal processing. Among them,
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the most common and widely used approaches are the matched
filter, the Iterative Adaptive Approach (IAA) [7], [8], and
the Sparse Learning via Iterative Minimization (SLIM) [9].
The main advantages of SLIM are a higher computational
efficiency due to the use of the Conjugate Gradient Least
Square (CGLS) algorithm, and fewer measurements necessary
to give sparser and more accurate estimates [9].

In this work, a SLIM based procedure for HRR profile re-
construction is considered to capitalize on the HRRP sparsity.
The main aspects of the method are that:

1) it resorts to the Regularized Maximum Likelihood
(RML) estimation paradigm including a term promoting
the sparsity of the profile that is related to the lq-norm
of the vector containing the scatterers reflectivities; a-
priori information on interference power level is also
accounted for at the design stage;

2) under the assumption that each range cell under test
contains at most one scatterer, the actual active scatter-
ers composing the target are determined exploiting the
Bayesian Information Criterion (BIC) [10]–[12]; BIC is
also used to automatic select the optimized q, so as to
make the procedure as much as possible user parameter
free.

Notation: We adopt the notation of using boldface lower
case for vectors (a) and boldface upper case for matrices (A).
CN indicates the set of complex column vectors of length N
and CN×K denotes the set of N × K complex matrices; I
represents the identity matrix, diag (a) indicates the diagonal
matrix whose i-th diagonal element is the i-th entry of a and
tr {A} represents the trace of the matrix A. The transpose and
the conjugate transpose operators are denoted by the symbols
(·)T and (·)†, respectively. ‖ · ‖ is the Euclidean norm of the
argument. E[·] denotes the statistical expectation. Finally, the
letter j represents the imaginary unit (i.e., j =

√
−1).

II. SIGNAL MODEL

A coherent monostatic radar system is considered which
transmits a train of N frequency modulated pulses of duration
Tp and Pulse Repetition Interval (PRI) T , with Tp < T . The
n-th transmitted pulse, with n = 1, . . . , N , can be expressed
as

s(n, t) =

√
P√
Tp

rect
(
t− (n− 1)T − Tp/2

Tp

)
ej2πfn(t−(n−1)T )

(1)
where:
• P is the radar transmit peak power;
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• rect(τ) is the rectangular window, that is equal to 1 as
−0.5 ≤ τ ≤ 0.5, and 0, otherwise;

• fn = fc + cnβ/2, is the n-th transmitted frequency
belonging to a discrete set, with cn ∈ [−1, 1].

The vector c = [c1, c2, . . . , cN ]T defines the frequency
hopping pattern and is referred to as frequency modulation
code.

The signal at the receiver, after down-conversion and filter-
ing operation, is sampled at fast-time instants ts(n − 1, lr),
with lr indicating a coarse range cell. The discrete-time echo
signal from the k−th stationary scatter located at the range rk
can be expressed as (under some mild technical conditions)
[13]

yk(n, ts(n− 1, lr)) = γ̄k
√
Pejζkcn (2)

where:
• γ̄k = γk exp(j4πfcRk/c),
• ζk = 2πβRk/c,

with Rk = rs(lr)−rk, the high-resolution range displacement
of the scatterer from the processed coarse range bin position,
and γk, the corresponding scattering coefficient.

Accounting for the presence of the K scatterers, within
the coarse range bin associated with lr, and considering the
noise contribution, the signal model, in vector notation, can
be expressed as

y =
√
P H(r, c)γ̄ + n, (3)

where
• r = [R1, . . . , RK ]T ∈ [0, c Tp/2]K is the vector contain-

ing the HRR displacements;
• γ̄ = [γ̄1, . . . , γ̄K ]T ∈ CK is the vector containing the

reflectivities of the scatterers within the coarse range bin
under test;

• n ∈ CN denotes the received disturbance signal, modeled
as a zero mean, white, complex circularly symmetric
Gaussian random vector.

The model matrix H(r, c) ∈ CN×K is defined as

H(r, c) = [h(R1, c),h(R2, c), . . . ,h(RK , c)] , (4)

with

h(R, c) =
[
ej2π

β
cRc1 , . . . , ej2π

β
cRcN

]T
∈ CN ,

the normalized response of a scatterer located at the range
increment R (target steering vector).

III. HRRP VIA SLIM

In this section, a HRR profile recovery strategy based on
SLIM [9] is discussed. To this end, let R̄1, R̄2, . . . , R̄K1

be a discrete set of possible range increments such that
{R1, R2, . . . , RK} ⊆ {R̄i}K1

i=1. Under this assumption, the
signal model (3), can be expressed as

y = Ax+ n, (5)

with the model matrix defined as

A =
√
P [h(R̄1, c)h(R̄2, c), ...,h(R̄K1

, c)]

and the hypothesis that the number of measurements N
is smaller than unknowns K1 and the signal vector x =
[x1, . . . , xK1

]T has most of its elements equal to 0, i.e., it
is sparse. Under these hypotheses, that are valid for many
radar applications in which the scene is essentially sparse, the
problem in (5) can be solved via SLIM, recovering both the
sparse signal and the noise power, which is not always a-priori
available.

The regularized minimization problem for the sparse signal
reconstruction can be formulated as

P

{
min
γ̄,σ2

N log(σ2) + 1
σ2 ‖y −Ax‖2 + fq(x)

s.t. σ2
L ≤ σ2 ≤ σ2

U

(6)

where

fq(x) =

K1∑
k=1

2

q

[(
|xk|2 + ε

)q/2 − 1
]

(7)

is the sparsity promoting penalty term, with ε > 0 a smooth-
ing factor making (7) differentiable. In (6), σ2

L and σ2
U are

respectively a lower bound and an upper bound to the noise
power, where σ2

L can be evaluated characterizing the power
level associated with the isolated operation of the receiver
components, whereas σ2

U can be obtained exploiting some a-
priori information and previous measurements.

It is worth pointing out that the regularized minimization
problem P is on the same line as the recovery approach
developed in [9]. If the initial estimates of x and σ2 are
given, e.g. via a matched filtering, it is possible to apply a
cyclic optimization procedure, which can be defined as in the
Algorithm 1.

Algorithm 1 SLIM for HRR profiling
1: Input. σ2

L, σ2
U , ε > 0, ∆ > 0, and q ∈ [0, 1].

2: Initialization. Set t = 0, σ2(0)
= σ2

L, and
x

(0)
i = h†iy/

√
P , i = 1, . . . ,K1,

with hi = h(R̄i, c)/||h(R̄i, c)||2.
3: repeat
4: t = t+ 1
5: B(t−1) = diag (b(t−1) + ε),

with b(t−1) =
[
|x(t−1)

1 |2−q, |x(t−1)
2 |2−q, ..., |x(t−1)

K1
|2−q

]T
6: x(t) = B(t−1)A†

(
AB(t−1)A† + σ2(t−1)

I
)−1

y

7: σ2(t)
= min

(
max

(
σ2
L, σ̂

2
)
, σ2
U

)
with

σ̂2 = 1
N ‖y −Ax

(t)‖22
8: until ‖x(t) − x(t−1)‖2/‖x(t)‖2 < ∆
9: Output. Estimated profile x̂.

In the following subsections, the estimated profile form
Algorithm 1 is used as input for the successive steps of the
proposed method:

1) the selection of active scatterers;
2) the HRR reconstruction via Least Square (LS) on the

selected scatterers;
3) the automatically estimation of q.
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A. BIC for active scatterers

In this subsection, the coarse range cell of interest is divided
in Nc disjoint range cells, and each cell is discretized with
Ms > 1 sub-bins. The range increments subset

Ai = {R1+(i−1)Ms
, . . . , RMs+(i−1)Ms

}

is associated to the i-th cell with i = 1, . . . , Nc. Hence,
the overall range increment set is given by A = ∪Nci=1Ai ={
R̄1, R̄2, . . . , R̄K1

}
, with K1 = NcMs.

Under the hypothesis that at most one scatterer is contained
in each cell, a BIC-based strategy is performed for selecting
the number of active scatterers.

Given xq̄ the SLIM estimate from Algorithm 1, with q = q̄,
applied to the steering vectors associated with A, let K̄, an
upper bound to the actual number of scatterers and I(k) =
{̃i?1, . . . , ĩ?k−1}, the set of the selected k − 1 scatterer indices
at iteration k − 1.

Then, at step k, the sub-range index of the selected scatterer
is found as

ĩ?k = arg min
ĩ6∈∪k−1

h∈I(k)Ah
BICq̄k (̃i) (8)

with

BICq̄k (̃i) = 2N log

‖y − ∑
i∈{I(k)∪{ĩ}}

aix̂i
q̄‖2


+ 3k log (2N) , k = 1, . . . , K̄,

(9)

where the factor 3, in the second term, represents the number
of unknowns for each source, i.e., the complex valued ampli-
tude and its position, ai is the i-th column of the matrix A
and xiq̄ is the i-th element of x̂q̄ . Remarkably, the constraint
ĩ 6∈ ∪k−1

h∈I(k)Ah in Equation (9) inhibits the choice of a sub-bin
lying in a range cell already occupied by a previously selected
scatterer. In other words, at the k−th iteration of the algorithm
a new scatterer (lying in a range cell different from that of the
scatterers composing the range profile estimate optimized up
to step k − 1) is selected such that the updated range profile
minimizes (9) and this procedure is repeated until k ≤ K̄.
Hence, denoting by

k? = arg min
k∈{1,K̄}

BICq̄k (̃i?k), (10)

the RP recovery is obtained from I(k?).

B. LS amplitudes

Let Aq̄
o be the model matrix obtained extracting from the

entire model matrix only the columns corresponding to the
active scatterers selected using the procedure explained in
Section III-A, with q = q̄. Thus, for each selected sub-
bin position (non-selected positions have a zero amplitude
value), the final values of x̂q̄R is computed via the least-squares
estimate on the active scatterers as

x̂q̄R(i) =


(
Aq̄
o
T
Aq̄
o

)−1

Aq̄
o
T
y, if i ∈ I(k?)

0, otherwise.
(11)

Fig. 1. Modulus of the realistic sparse profile used for simulation.

C. Adaptive Selection on q

Here, again, a model order selection is used to make the
proposed procedure as much as possible user parameter free
[11]. To this end, a BIC approach to evaluate q is used, but it
can easily be extended to also account for the other parameters,
such as the smoothing factor ε.

Denoting by Iq ⊆ (0, 1] the discrete set of the considered
q values, the selection is done using the BIC criterion

q? = argmin
q∈Iq

BIC(q), (12)

with the objective function defined as

BIC(q) = 2N log
(
‖y −AxqR‖

2
)

+ 3h(q) log (2N) , (13)

where xqR represents the profile estimate resulting from
SLIM with both BIC for active scatterers selection and LS
amplitudes estimation, for a given q, whereas h(q) stands for
the number of active sub-bins, i.e., the values of xqR different
from zero.

IV. PERFORMANCE ANALYSIS

In this section, the ability of the SLIM approach to recon-
struct the HRR profile is assessed also in comparison with
the IAA. To make as much as possible fair the performance
comparison, the IAA estimated HRR profile is elaborated
with further post-processing, namely, the selection of active
scatterers and the LS estimate on the selected sub-bins.

The analysis is conducted for realistic simulated profiles that
are created as follows:
• a measured profile at a nominal range resolution is

considered (the black line in Figure 1);
• a range profile with dominant scatterers is constructed

setting a threshold (dashed red line in Figure 1), account-
ing for an estimate of the interference power level (the
samples below this threshold are set to zero);

• finally, the location of any detected dominant scatterer
is obtained randomly generating the sub-bin within the
range cell.
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Fig. 2. Modulus of the HRR realistic profiles for a burst of N = 36 transmitted pulses, SNR = 1 dB, and a number of sub-bins of 4 (left), 8 (center), and
12 (right): black stems represent the true profile while dashed red ones correspond to the SLIM estimated profile.

Fig. 3. Linear Stepped Frequency Performance: N = 36 in the first row, N = 40 in the second one, while the number of sub-bins is 4 on the left column,
8 at the center column, and 12 on the right column. Red curves represent the SLIM performance while blue lines the IAA.

Furthermore, in all the simulations, the following parameters
have been considered:
• ε = 10−5;
• β = 200 MHz;
• fc = 9 GHz;
• Tp = 0.1 µs;
• T = 1 µs;
• σ2

L is set equal to half of the true noise power;
• σ2

U = 100.
The phases of the complex valued scatterers are modeled as
independent and identically distributed (i.i.d.) uniform random
variables within [0, 2π).

As stated above, from the realistic profile represented in Fig-
ure 1, the HRR is constructed randomly varying the position
of the scatterers within the selected number of sub-bins Ms,
which is fixed at 4, 8, and 12, namely at 0.1875, 0.0938, and
0.0625 m range displacements. In Figure 2, the three SLIM
estimated HRR profiles (red stems) with respect to the real
ones (black stems) are shown: the number of sub-bins for the

high resolution is 4, on the left, 8, at the center, and 12, on
the right. In this case, a burst composed of N = 36 linear
frequency stepped pulses is considered, and a single realization
of noise is added leading to a SNR of 1 dB.

The Root Mean Square Error (RMSE) of the RP is consid-
ered as figure of merit, i.e.:

RMSE =

√
E
[
‖xR − x̂R‖2

]
, (14)

where xR is the vector of the true RP whose elements are the
reflectivities of the scatterers associated to the sub-bins (char-
acterized by many zeros), and x̂R is the estimated counterpart.
Since the statistical expectation in (14) cannot be computed in
closed form, its estimate is obtained through a number of MC
simulations, set equal to 500 in the following analysis. Figure
3 shows the RMSE of the RP estimate obtained via SLIM and
IAA, assuming as true RP those in Figure 2 (namely, at each
MC iteration, the positions of the scatterers remain the same).
Specifically, the first row plots refer to N = 36, whereas the
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second row plots assume N = 40. Additionally, 4, 8, and 12
sub-bins are supposed in left, center, and right column plots,
respectively.

The curves show that the proposed SLIM based procedure
is capable of achieving better performance with respect to the
IAA, ensuring a lower RMSE value for both the considered
number of pulses. When a greater number of pulses (N = 40)
is used, both the procedures obtain a gain in terms of RMSE,
which is also more significant for SLIM.

V. CONCLUSIONS AND FUTURE WORK

A procedure based on SLIM, an lq-norm based regularized
method, has been considered for HRR profile recovery. The
algorithm has included the BIC model order selection, to
make the procedure as much as possible user parameter free
(automatically estimating q) and to select the number of the
active scatterers in a sparse scenario.

The performance of the proposed algorithm has been as-
sessed through the simulation of realistic sparse profiles at
varying range sub-bin numbers. Comparisons with IAA show
that SLIM achieves better results when the linear stepped
pattern is used.

It is worth noticing that even in the presence of comparable
performance, the SLIM based procedure, by incorporating the
CGLS approach, can obtain some computational advance over
IAA [9].

For future work, it could be useful to take into account
that there are several frequency hopping patterns that can be
selected. In fact, the most popular assumes a linear law, which
possibly presents a ridge in the range-Doppler ambiguity
function. A possible solution to the aforementioned problem
is obtained when the transmitted frequencies are randomly
changed, rather than linearly [14]. Thus, the frequency hop-
ping pattern still represents a degree of freedom and several
examples are provided in the literature [15]–[21].
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