
Weighted sparse recovery with expanders

Bubacarr Bah
African Institute for Mathematical Sciences (AIMS) South Africa and

Division of Applied Mathematics, Stellenbosch University
Cape Town, South Africa

Email: bubacarr@aims.ac.za

Abstract—Weighted sparse recovery refers to
sparse recovery where the signals have “weighted
sparsity” and weighted l1 minimization is used for
reconstruction. We propose novel weighted sparse
recovery guarantees with expander matrices, using
a weighted versions of the null space property to
derive these guarantees. These expender matri-
ces are very sparse, hence they have favourable
computational benefits compared to their dense
counterparts. Moreover, we show that it is possible
to achieve sample complexities that are linear in
the weighted sparsity of the signal, where the sam-
pling rates can be smaller than those of standard
sparse recovery. Furthermore, these results reduce
to known results in standard sparse recovery and
sparse recovery with prior information.

I. INTRODUCTION

A. Problem statement and overview

In using scaled binary matrices as sensing
matrices, the weighted sparse recovery problem,
introduced in [17], is modified in the following
way. Firstly, let x ∈ Rn be the target signal,
which is k-weighted sparse, i.e.

∑
i∈S ωi ≤ s,

where S is the support of x and 1 ≤ ωi < ∞
for i ∈ [n]. We sense x using a measurement
(sensing) matrix A ∈ Rm×n to get observations
y ∈ Rm, precisely y = Ax + e, where e is a
noise vector, which is bounded, i.e. ‖e‖1 ≤ η <
∞. To recover x from y we solve the following
modified weighted `1-minimization problem.

min
z∈Rn

‖z‖ω,1 subject to ‖Az−y‖1 ≤ η, (1)

where ‖z‖ω,1 =
∑n

i=1 ωi|zi| with weights
ωi ≥ 1. The difference in (1) from the standard
weighted `1-minimization problem is the re-
placement of the `2-norm by the `1-norm in the
data fidelity term (constraints). The scaled binary
matrices, A, used in this work are adjacency
matrices of expander graphs defined below.

Definition I.1. Let G = ([N ], [n], E) be a left-
regular bipartite graph with N left vertices, n

The author was partially supported by Rachel Wards NSF
CAREER Grant, award #1255631, and by the Alexander von
Humboldt Foundation, under the programme financed by the
BMBF entitled “German Research Chairs”.

right vertices, a set of edges E and left degree d.
If, for any ε ∈ (0, 1/2) and any S ⊂ [N ] of size
|S| ≤ k, we have that |Γ(S)| ≥ (1−ε)d|S|, then
G is referred to as a (k, d, ε)-expander graph.

These matrices can extremely sparse having
only d ones (non-zeros entries) per column. This
make them more attractive for computational
purposes. Moreover, we used weighted sparsity
instead of standard sparsity due to the fact we
assume to have prior knowledge of the structure
of the class of signals we consider. Due to this
prior knowledge we assign weights that control
the likelihood of the inclusion of certain indices
in the support of our signal. More precisely, in
the above set-up smaller weights are assigned to
those indices which are deemed “more likely”
to belong to the true underlying support.

In the standard sparse recovery setting, bi-
nary matrices are known to possess what is
referred to as the square-root bottleneck, that
is they require m = Ω

(
k2
)

rows instead of
the optimal O (k log (N/k)) rows to be “good”
compressed sensing matrices with respect to
optimal recovery guarantees in the `2 norm, see
[7], [8]. Yet, in [4], the authors show that such
sparse matrices achieve optimal sample com-
plexity (optimally few rows of O (k log (N/k)))
if one instead considers error guarantees in the
`1 norm. This manuscript develops comparable
results for sparse binary matrices in the setting
of weighted `1 minimization.

The contributions of this work include (i)
the introduction of the weighted robust null
space property, satisfied by adjacency matri-
ces of (k, d, ε)-expander graphs, see Definition
II.1 in Section II-A; (ii) the characterization
of weighted sparse recovery guarantees for (1)
using these matrices, see Theorem II.2, in Sec-
tion II-A; (iii) the derivation of sampling rates
that are linear in the weighted sparsity of the
signals using such matrices, see Theorem II.3 in
Section II-B. Numerical experiments support the
theoretical results, see Section III.
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B. Related work

Firstly, the use of sparse sensing matrices
from expander graphs in standard sparse recov-
ery is not new, see [4], which is motivated by
computational advantages of these matrices over
their dense counterparts. However, this work is
the first to apply these matrices to weighted
sparse recovery.

Secondly, weighted sparse recovery which
was introduced in [17] was using structured ma-
trices and bounded orthonormal systems, which
was dictated by the polynomial interpolation
problem they authors were looking at. The re-
sults derived in [17] were extended to the use of
Gaussian matrices in [3]. This work is a further
extension to the use of expander matrices.

Standard sparse recovery with weighted `1
minimization has a bit of a longer history, see
[1], [3], [5], [6], [10]–[13], [15]–[20]. Unlike
this work, all of these prior works considered
dense matrices, either subgaussian matrices or
structured random matrices.

An earlier version of this work is on arXiv,
[2]. Due to space issues a lot of details are
left out in this paper, in particular we skip all
the proofs in this paper and refer the interested
reader to the longer version of the paper on
arXiv, i.e. [2].

II. THEORETICAL RESULTS

The main results of this work give recov-
ery guarantees for weighted `1 minimization
(1) when the sampling operators are adjacency
matrices of expander graphs for the class of
weighted sparse signals. We characterize the
appropriate weighted robust null space property
and expansion condition that the adjacency ma-
trix of a (k, d, ε)-expander graph needs to satisfy
to guarantee robust weighted sparse recovery.
These results reduce to the standard sparsity
and unweighted `1 minimization results when
the weights are all chosen to be equal to one.
We derive sample complexities, in terms of the
weighted sparsity s, of weighted sparse recovery
using weighted `1 minimization compared to un-
weighted `1 minimization with adjacency matri-
ces of a (k, d, ε)-expander graphs. These sample
complexities are linear in ω(S) and reduce to
known results of standard sparse recovery and
sparse recovery with prior information.

A. Robust weighted sparse recovery guarantees

The weighted null space property (ω-NSP)
has been used to give sparse recovery guarantees
[12]–[14], [17] with two schemes for choice of
weights. In [12], [17] the weights ω ≥ 1; whilst

in [13], [14] the weights ω ≤ 1. Similar to [17],
we consider the weighted robust NSP (ω-RNSP)
for the type of matrices we focus on, which is
the robust version of the NSP in the weighted
case and follows from the unweighted RNSP
proposed in [9] for such matrices.

Definition II.1 (ω-RNSP). Given a weight vec-
tor ω, a matrix A ∈ Rn×N is said to have the
robust ω-RNSP of order s with constants ρ < 1
and τ > 0, if
‖vS‖ω,1 ≤ ρ‖vSc‖ω,1 + τ

√
s‖Av‖1, (2)

for all v ∈ RN and all S ⊂ [N ] with ω(S) ≤ s.

We will derive conditions under which an
expander matrix satisfies the ω-RNSP to deduce
error guarantees for weighted `1 minimization
(1). This is formalized in the following theorem.

Theorem II.1 (Theorem 3.1, [2]). Let the matrix
A ∈ {0, 1}n×N be the adjacency matrix of a
(k, d, ε)-expander graph. If ε2k < 1/6, then A
satisfies the ω-RNSP (2) with

ρ =
2ε2k

1− 4ε2k
, and τ =

1√
d(1− 4ε2k)

. (3)

Based on Theorem II.1 we provide recon-
struction guarantees in the following theorem.

Theorem II.2 (Theorem 3.2, [2]). Let A be
the adjacency matrix of a (k, d, ε)-expander
graph with ε2k < 1/6. Given any x ∈ RN , if
y = Ax + e with ‖e‖1 ≤ η, a solution x̂ of
(1) is an approximation of x with the following
error bounds

‖x̂− x‖ω,1 ≤ C1σs(x)ω,1 + C2

√
sη, (4)

where the constants C1, C2 > 0 depend only on
d and ε.

B. Sample complexity

Here we derive sample complexities in terms
of the weighted sparsity, s, of weighted sparse
recovery using weighted `1-minimization with
sparse adjacency matrices of (k, d, ε)-expander
graphs. These sample complexity bounds are
linear in the weighted sparsity of the signal
and can be smaller than sample complexities of
standard sparse recovery using unweighted `1-
minimization with and sparse adjacency matrices
of (k, d, ε)-expander graphs. Moreover, these
results recover known results for the settings
of a) uniform weights, b) polynomially growing
weights, c) sparse recovery with prior support
estimates, and d) known support. In particular, in
the setting of sparse recovery with prior support
estimates, depending on mild assumptions on the
growth of the weights and how well is the sup-
port estimate aligned with the true support will

(c) EUSASIP 2018 / CoSeRa 2018

2018 5th International Workshop on Compressed Sensing applied to Radar, Multimodal Sensing, and Imaging (CoSeRa)

(c) EUSASIP 2018 / CoSeRa 2018

2018 5th International Workshop on Compressed Sensing applied to Radar, Multimodal Sensing, and Imaging (CoSeRa)



lead to a reduction in sample complexity. The
following derivations, without loss of generality,
assume an ordering of the entries of the signal
in order of magnitude such that S has the first
k largest in magnitude entries of the signal.

Theorem II.3 (Theorem 3.3, [2]). Fix weights
ωj ≥ 1. Suppose that γ > 0 depending
on the choice of weights, and 0 ≤ δ < 1.
Consider an adjacency matrix of a (k, d, ε)-
expander A ∈ {0, 1}n×N , and a signal x ∈ RN

supported on S ⊂ [N ] with |S| ≤ k and∑
i∈S ωi ≤ s. Assume that noisy measurements

are taken, y = Ax + e with ‖e‖1 ≤ η and
ε2k < 1/6. Then with probability at least 1− δ,
any solution x̂ of (1) satisfies (4), if

n = O
(
s/(ε2γ)

)
, and d = O (εn/k) . (5)

III. EXPERIMENTAL RESULTS

In these experiments we consider the class
of weighted sparse signals modeled in [3]. Pre-
cisely, the probability for an index to be in
the support of the signal is proportional to the
reciprocal of the square of the weights assigned
to that index. We also considered polynomi-
ally growing weights. In particular, we assign
weights ωj = j1/5 where the indices are ordered
such that the support corresponds to the smallest
in magnitude set of weights. The goal of the
experiments was to compare the performance
of weighted sparse recovery using weighted `1-
minimization and standard sparse recovery using
unweighted `1-minimization using both Gaus-
sian sensing matrices and sensing matrices that
are sparse binary adjacency matrices of expander
graphs (hence forth referred to as expander
matrices) in terms of a) sample complexity
b) computational runtimes, and c) accuracy of
reconstruction. The m × N Gaussian matrices
have i.i.d. standard normal entries scaled by

√
m

while the expander matrices are generated by
putting d ones at uniformly at random locations
in each column. We draw signals of dimension
N from the above mentioned model, where the
nonzero values are randomly generated as scaled
sums of Gaussian and uniformly random vari-
ables without any normalization. We encode the
signals using these matrices and add Gaussian
white noise with noise level ‖e‖2 ≤ 10−6 =: η2
and define η1 such that ‖e‖1 ≤ η1. For the
weighted sparse reconstruction, we use (1) with
expanders and use a modified version of (1),
replacing the `1 by `2 and η1 by η2 in the
data fidelity term of (1), with Gaussian matrices;
while the standard sparse reconstruction used

min
z∈RN

‖z‖ω,1 subject to ‖Az− y‖p ≤ ηp, (6)

with p = 1 for expanders and p = 2 for Gaussian
matrices.

The following results are averaged over
many realizations for each problem instance
(s,m,N). The dimension of the signal is
N = 210. For the expander matrices we
fixed d = d2 log(N)e and we vary the num-
ber of measurements m such that m/N ∈
[max(2d/N, 0.05), 0.35]; and for each m we
vary the weighted sparsity of the supp(x), S,
such that ω(S)/m = s/m ∈ [1/min(m), 2.5].
Then we record k as the largest |S| for a
given s. We consider a reconstruction successful
if the recovery error in the `2-norm is below
10η1 or 10η2 for expander or Gaussian matrices
respectively and a failure otherwise. Then we
compute the empirical probabilities as the ratio
of the number of successful reconstructions to
the number of realizations.

A. Sample complexities via phase transitions

We present below sample complexity com-
parisons using the phase transition framework
in the phase space of (s/m,m/N). Note that in
all the figures we normalized (standardized) the
values of s/m in such a way that the normalized
s/m is between 0 and 1 for fair comparison.
Figure 1 shows phase transition curves in the
form of contours of empirical probabilities of
50% (solid curves) and 95% (dashed curves) for
expander and Gaussian matrices using either `1
or `ω,1 minimization. Both matrices have similar
performance and by having larger area under
the contours, weighted sparse recovery using (1),
outperforms standard sparse recovery using (6).
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Fig. 1. Contour plots depicting phase transitions of
50% and 95% recovery probabilities (dashed and solid
curves respectively).

The result in Figure 1 is further elucidated
by the plots in Figure 2 and Figure 3. In the
latter we show a snap shot for fixed s/m = 1.25
and varying m while in the former we show
a snap shot for fixed m/N = 0.1625 and
varying s. Both plots confirm the comparative
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performance of expanders to Gaussian matrices
and the superiority of weighted `1 minimization
over unweighted `1 minimization.
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Fig. 2. Recovery probabilities for a fixed s/m = 1.25
and varying m.
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Fig. 3. Recovery probabilities for a varying s and fixed
m/N = 0.1625.

B. Computational runtimes

To compare runtimes we sum the generation
time of A (Gaussian or expander), encoding
time of the signal using A, and the reconstruc-
tion time, with weighted `1 minimization over
unweighted `1 minimization, and we average
this over the number of realizations. In Figure
4 we plot average runtimes for varying m/N .
This clearly shows that expanders have small
runtimes.
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Fig. 4. Runtime comparisons.

C. Accuracy of reconstructions

In Figures 5 and 6 we plot relative approxi-
mation errors in the `ω,1 norm. Figure 5 is for a
fixed s/m = 1.25 and varying m; while Figure
6 for fixed m/N = 0.1625 and varying s. In
Figures 7 and 8 we plot relative approximation
errors in the `2 norm. Similarly, Figure 7 is for a
fixed s/m = 1.25 and varying m; while Figure
8 is for fixed m/N = 0.1625 and varying s.
In both sets of figures we see that weighted
`1 minimization converges faster with smaller
number of measurements than unweighted `1
minimization; but also we see that Gaussian
sensing matrices have smaller approximation
errors than the expanders.
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Fig. 5. Relative errors in the `ω,1 norm for a fixed
s/m = 1.25 and varying m.
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Fig. 6. Relative errors in the `ω,1 norm for a fixed
m/N = 0.1625 and varying s.
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Fig. 7. Relative errors in the `2 norm for a varying m
and fixed s/m = 1.25.
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Fig. 8. Relative errors in the `2 norm for a varying s
and fixed m/N = 0.1625.

IV. CONCLUSION

We give the first rigorous error guarantees for
weighted `1 minimization with sparse measure-
ment matrices and weighted sparse signals. The
matrices are computationally efficient consider-
ing their fast application and low storage and
generation complexities. The derivation of these
error guarantees uses the weighted robust null
space property proposed for the more general
setting of weighted sparse recovery. We also de-
rived sampling rates for weighted sparse recov-
ery using these matrices. These sampling bounds
are linear in s and can be smaller than sampling
rates for standard sparse recovery depending on
the choice of weights.
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[14] Hassan Mansour and Özgür Yilmaz. Weighted-`1
minimization with multiple weighting sets. In SPIE
Optical Engineering + Applications, pages 813809–
813809. International Society for Optics and Photon-
ics, 2011.

[15] Samet Oymak, M Amin Khajehnejad, and Babak
Hassibi. Recovery threshold for optimal weight `1
minimization. In Information Theory Proceedings
(ISIT), 2012 IEEE International Symposium on, pages
2032–2036. IEEE, 2012.

[16] Ji Peng, Jerrad Hampton, and Alireza Doostan. A
weighted `1-minimization approach for sparse poly-
nomial chaos expansions. Journal of Computational
Physics, 267:92–111, 2014.

[17] Holger Rauhut and Rachel Ward. Interpolation via
weighted `1 minimization. Applied and Computa-
tional Harmonic Analysis, 2015.

[18] Namrata Vaswani and Wei Lu. Modified-CS: Modi-
fying compressive sensing for problems with partially
known support. Signal Processing, IEEE Transactions
on, 58(9):4595–4607, 2010.

[19] R Von Borries, Jacques C Miosso, and Cristhian M
Potes. Compressed sensing using prior information.
In Computational Advances in Multi-Sensor Adaptive
Processing, 2007. CAMPSAP 2007. 2nd IEEE Inter-
national Workshop on, pages 121–124. IEEE, 2007.

[20] Weiyu Xu, M Amin Khajehnejad, Amir Salman Aves-
timehr, and Babak Hassibi. Breaking through the
thresholds: an analysis for iterative reweighted `1
minimization via the grassmann angle framework. In
Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, pages 5498–
5501. IEEE, 2010.

(c) EUSASIP 2018 / CoSeRa 2018

2018 5th International Workshop on Compressed Sensing applied to Radar, Multimodal Sensing, and Imaging (CoSeRa)

(c) EUSASIP 2018 / CoSeRa 2018

2018 5th International Workshop on Compressed Sensing applied to Radar, Multimodal Sensing, and Imaging (CoSeRa)


