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Abstract—Previous work introduced dropped-channel polari-
metric synthetic aperture radar (PolSAR) compressive sensing
assuming a point scatterer spatial response. In this paper, we
expand that work to include any spatial dictionary. Of particular
interest is a dictionary that can model both localized and
extended scatterers to obtain a sparse representation of the
scene. We simulate results for different spatial and polarization
dictionaries. Dictionaries well-matched to the targets result in a
sparser coefficient vector, as measured by the `1-norm.

I. INTRODUCTION

Previous work [1], [2] suggests that polarimetric compres-
sive sensing (CS) may utilize channel crosstalk to measure
a reduced set of polarization channels and still recover full-
pol imagery. In this paper, we build upon [1], [2] by also
incorporating a spatial dictionary to obtain an even sparser so-
lution. The previous spatial dictionary used in [1], [2] assumes
single point scatterers, which leads to multiple coefficients
and reduced sparsity when extended scatterers are present
in the scene. A spatial dictionary that includes scattering
phenomenology expected in a scene will result in a much
sparser representation, with only one or a few coefficients per
scatterer. Combined with a polarization dictionary, the spatial
dictionary will provide target feature information that can be
used for scene interpretation.

Recently, spatial dictionaries have been used to help with
acoustic imaging [3], [4], hyperspectral imaging [5], adaptive
beamforming [6], [7], and radar [8]–[12]. There have also been
numerous recent applications of compressive sensing (CS)
to radar imaging, ranging from autofocus [13] and scatterer
persistence [14] to sub-Nyquist sampling [15] and random
sampling [16]. Previously, a method was derived to use CS
to reconstruct polarimetric synthetic aperture radar (PolSAR)
images from a subset of measured channels [1]. In [1], single-
pixel point targets are assumed, so the identity matrix is used
as the spatial dictionary. The point scatterer assumption, in
general, works for any scene, as any complex scatterer can
be broken down into a set of point scatterers under a high
frequency assumption. When extended scatterers are present,
the point scatterer model leads to a less sparse solution. We
prefer to have as few coefficients per scatterer as possible,
which requires spatial and polarization dictionaries that are
well-matched to the scene.

Our approach to combining CS and SAR is unique in that
we compress over the polarization channels themselves, not
the fast or slow time samples [1]. Our approach allows us to
drop measured channels and reconstruct them from the cross-
talk information. By extending our approach with a spatial
dictionary for extended scatterers, we can obtain a sparse
representation for scenes that contain multiple scatterer types.

This paper is laid out as follows. In Section II, we incorpo-
rate a general spatial dictionary into the mathematical frame-
work of [1], [2]. In Section III, we present the results from
a simple simulation involving a point target and an extended
scatterer. Section IV analyzes recovery success versus scene
sparisty. In Section V, we present our conclusions and suggest
some further direction for this work.

II. THEORY

A polarimetric stack of radar images may be decomposed
into a set of scattering coefficients as follows. As in [1],
[2] we assume xm′ is the unknown N ′ × 1 reflectivity in
m′ = 1, . . . ,M ′ available channels and ym is the N × 1
vectorized image for m = 1, . . . ,M measured channels. The
channels are coupled via crosstalk matrix C, and matrix J
indicates which M ≤ M ′channels are measured. (Dropping
a channel is the PolSAR compressive sensing thesis of [1],
[2].) Furthermore, the reflectivity x = [xT

1 , . . . ,x
T
M ′ ]T can be

broken down into a dictionary representation x = (P⊗D)b,
for an M ′ × Q polarization dictionary P, N ′ × D′ spatial
dictionary D, and QD′× 1 coefficient vector b. The notation
⊗ represents a Kronecker product. Then, using the above
definitions, the noisy, channel-coupled observed image stack
y = [yT

1 , . . . ,y
T
M ]T can be written in terms of the scattering

coefficients b as
y = Ab+ n (1)

where
A = (JC⊗A1)(P⊗D) (2)

and n is the MN ′×1 complex additive noise vector. Equation
(2) is a modified version of [1, Eq. 5d] to include the arbitrary
spatial dictionary D in the multi-channel image formation
operator A. In (2), A1 is the N ′×N ′ single channel imaging
operator. As in previous work, we assume A1 is the same
for all channels; however, (2) can be rewritten to remove
such restriction. In [1], the spatial dictionary was D = IN ′ ,
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an N ′ × N ′ identity matrix representing point scatterers. In
this paper, we choose a generic D to contain both point and
extended scatterers. More specific wave-based or canonical
shape dictionaries may also be used [8], [11], [12]. Equation
(2) is an example of Kronecker compressive sensing, as
defined in [17], since the problem separates into a product
of dictionaries and measurement matrices, each of which is
a Kronecker product of dictionaries or measurement matrices
for a specific dimension. In our case, we have polarization and
spatial dimensions.

We aim to reconstruct dropped channels and find a sparse
representation of the scene. Thus, we have a basis pursuit
denoising (BPDN) [18] problem

min
b
‖b‖1 s.t. ‖y − (JC⊗A1)(P⊗D)b‖2 ≤ ε (3)

which is similar to the problem in [1] with the replacement
of IN ′ with the spatial dictionary D. Previously in [1], each
coefficient in b corresponded to the polarimetric response
of the target in the dictionary P for each pixel. Now, b
contains coefficients for the combined spatial and polarimetric
dictionaries; non-zero coefficients relate to each scatterer in the
scene. Examples in the next section will compare sparsity of
reconstructions with different polarimetric and spatial dictio-
naries. In each case, (3) is solved, resulting in recovery of the
missing channel, removal of crosstalk and noise, and sparse
representation of the scene.

III. EXAMPLE SCENE RECOVERY

In this section, we present simulation results from solving
Equation (3) using both point scatterer and combined point and
extended scatterer spatial dictionaries as well as two different
polarization dictionaries. We then compare the `1-norm over
the estimated scattering coefficients vector b̂ and `2 residual
error of b and x for each scenario. For each test, we do not
measure the HH channel directly and instead, reconstruct it
from crosstalk information as in [1], [2], using the BPDN
algorithm from the SPGL-1 package [19], [20].

The example scene is 5 × 6 pixels in size and consists of
two scatterers: a single pixel point target and a three-pixel
wide extended scatterer oriented in the cross-range direction.
The target locations are shown in Figure 2. We assume that
the extended scatterer is completely contained in the image;
thus, there are 18 possible scatterer locations included in
the extended target dictionary Dext. Likewise, there are 30
possible single-pixel target locations in the point scatterer
dictionary Dpt = I30. Combining the two dictionaries into
D = [Dpt,Dext], yields a full spatial dictionary of size
30×48. The full spatial dictionary structure can be seen in Fig-
ure 1, with each part labeled and highlighted for clarity. There
are three stripes in Dext, corresponding to the three points in
the extended scatterer. The dictionary D captures the spatial
extent of the scatterer response in any channel. The scatterer’s
polarization response is fit to the polarization dictionary P.

Fig. 1. Structure of the spatial dictionary D = [Dpt,Dext].

We compare two different polarization dictionaries. The first
is the same canonical basis as used in [1]:

Pcan =
1√
2


1 1 0
0 0 1
0 0 1
1 −1 0

 (4)

which corresponds to the first three columns of a Pauli basis.
The second polarization dictionary is structured as

Pnew =


1
2

1√
2

1
2 0
1
2 0
1
2 − 1√

2

 . (5)

Our examples assume that the point target at (−1,−1) has po-
larization response corresponding the first column of Pcan and
the extended target has polarization response corresponding to
the first column of Pnew.

Figure 2 shows the true reflectivity of the scene in each
polarization. The true reflectivity is the product of the true b
vector with matrix P ⊗D. Observed images are formed via
(1) and (2) with the crosstalk matrix the same as used in [2].
The complex crosstalk matrix picks magnitude from uniform
[0,1] and phase from uniform [0, 2π], and sets the diagonal
to ones. Matrix J corresponds to a 4× 4 identity matrix with
the first row omitted in order to drop the HH channel from
the measurements. Noise is added at a 20 dB signal-to-noise
ratio (SNR), yielding the PFA observations shown in Figure
3. The crosstalk artifacts displayed in the cross-pol images in
Figure 3 enable recovery of the dropped HH channel.

Figures 4-7 show the recovered full-pol reflectivity for
different spatial and polarization dictionary combinations. The
four subfigures in each figure show the estimated reflectivity
x̂ = (P ⊗ D)b̂ obtained from the BPDN solution b̂. The
recovered images in each case are a good representation of
the target true reflectivity shown in Figure 2.

Figures 4 and 5 use the canonical polarization dictionary
P = Pcan. Figure 4 uses the point scatterer spatial dictionary
D = Dpt = IN ′ , while Figure 5 uses the combined point
and extended scatterer dictionary D = [Dpt,Dext]. Figures 6
and 7 replace the canonical dictionary with P = Pnew. It is
difficult to tell by comparing Figures 4-7 the difference that
was made by the change of spatial and/or polarization dictio-
naries. This is because the primary difference is in the sparsity
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of the representation of the two scatterers. Sparsity is best
shown by the difference in the `1-norm of the BPDN-estimated
vector of scattering coefficients b̂. Table I shows both the `1-
norm of the estimated coefficient vector and the `2-norm of
the difference between true and estimated scene reflectivity.
Comparing the D = IN ′ and D = [Dpt,Dext] cases, we can
see that the spatial dictionary D = [Dpt,Dext] leads to a
substantially lower `1-norm on b̂ despite similar images and
`2 errors. Thus, the representation in Figure 5 is more sparse
than the representation in Figure 4. Likewise, b̂ for Figure 7 is
more sparse than for Figure 6. The lower `1-norm highlights
the benefit of the extended scatterer spatial dictionary. By
choosing a dictionary that anticipates an extended scatterer, we
are able to take advantage of the spatial sparsity of the target,
representing the extended scatterer as one coefficient instead
of three. Likewise, by choosing a polarization dictionary that
anticipates the polarimetric sparsity of the point target, we
are able to further reduce the `1-norm by requiring even
fewer coefficients to represent the scatterers. Specifically, if
we compare row 2 and row 4 in Table I, we see that the
`1-norm is smaller when the Pnew dictionary is used. Since
the extended scatterer can be represented by only column
one of Pnew, as opposed to a combination of columns one
and three of Pcan, we are able to achieve an even sparser
representation of b̂. A lower `1-norm value is indicative of a
more sparse representation of the scene, which is beneficial for
efficient storage and communication of the scene information.
On the other hand, the polarization response of the point target
corresponds to the first column of Pcan, which cannot be
represented by a combination of columns of Pnew, resulting in
increased error on that target. Thus, it is important to choose
dictionaries which are well-matched to the scene scattering
phenomenology to obtain both good `1 and `2 fit.

TABLE I
COMPARISON OF `1-NORM AND `2 ERROR FOR THE RECOVERY METHODS

Combination `1-Norm : b̂ `2 Error : x `2 Error : b
D = Dpt, P = Pcan 6.66026 0.51231 0.51231

D = [Dpt,Dext], P = Pcan 2.36957 0.56580 0.39903
D = Dpt, P = Pnew 5.5679 0.28313 0.28313

D = [Dpt,Dext], P = Pnew 1.86978 0.48146 0.55104

IV. SPARSE RECOVERY ANALYSIS

Another import metric in testing our approach is the average
error rate at each level of sparsity. To measure the error,
we run a Monte Carlo simulation for each combination of
spatial dictionary and polarization dictionary. The Monte Carlo
simulation is run over the levels of sparsity from 5% to 60% at
5% increments. At each level, a series of random b vectors are
generated, turned into observations via Equations (1) and (2)
and run through SPGL-1. The `2-error is then generated for
each result and the average is computed. The average `2-error
versus number of non-zero components is shown in Figure
8 for each combination of spatial and polarization dictionary.
Specifically, Figures 8(a) and 8(b) show the `2-error of the

(a) HH (b) HV

(c) VH (d) VV

Fig. 2. True reflectivity of x

(a) HH Observed (b) HV Observed

(c) VH Observed (d) VV Observed

Fig. 3. PFA Observations of Scene

b vectors for both polarization dictionaries when D = IN ′

and D = [Dpt,Dext], respectively. Figure 8(c) shows the `2-
error of the x vectors for all four combinations of polarization
and spatial dictionaries. Due to deconfliction of overlapping
scatterers in the D = [Dpt,Dext] case, the sweep does not
make it to 60%, the error is plotted at the average percentage
achieved instead.

Figure 8 shows that the error of b̂ and x̂ for each com-
bination generally increases as the sparsity decreases. Initial
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(a) HH BPDN Recovery (b) HV BPDN Recovery

(c) VH BPDN Recovery (d) VV BPDN Recovery

Fig. 4. BPDN Recovery of Scene with P = Pcan, D = IN′ .

(a) HH BPDN Recovery (b) HV BPDN Recovery

(c) VH BPDN Recovery (d) VV BPDN Recovery

Fig. 5. BPDN Recovery of Scene, P = Pcan, D = [Dpt,Dext]

results indicating that the error is much larger for the spatial
dictionary D = [Dpt,Dext] may be attributable to the sparsity
constraints in the BPDN algorithm. It is possible that BPDN
is selecting coefficients out of the Dext part of the spatial
dictionary to represent x̂ when the true x is really a combi-
nation of point targets as opposed to an extended scatterer.
This would yield a sparser representation of the scene while
being inconsistent with the true b vector coefficients. Figure
8(c) also points towards this hypothesis as the errors in the x̂

(a) HH BPDN Recovery (b) HV BPDN Recovery

(c) VH BPDN Recovery (d) VV BPDN Recovery

Fig. 6. BPDN Recovery of Scene, P = Pnew , D = IN′

(a) HH BPDN Recovery (b) HV BPDN Recovery

(c) VH BPDN Recovery (d) VV BPDN Recovery

Fig. 7. BPDN Recovery of Scene, P = Pnew , D = [Dpt,Dext]

are similar across all combinations of spatial and polarization
dictionaries. This indicates that, despite the higher error rates
in b̂ when D = [Dpt,Dext], x̂ is a close approximation of the
true x vector. Thus, dictionary choice is an important factor for
achieving both good signal recovery and sparse representation.

V. CONCLUSION

We have extended the work in [1], [2] to include a spatial
dictionary. Our approach can extend to any spatial dictionary
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but we only offer one example here. The spatial dictionary
was shown to provide a more sparse representation of a scene
that contains extended scatterers as compared to the point
scatterer dictionary used in [1]. The increased sparsity is due
to the spatial dictionary being well-matched to the scene,
giving us coefficients on a per-scatterer level as opposed to
a per-pixel level like in [1]. We also compared two different
polarization dictionaries to explore the effects on scene error
and sparsity. By achieving a sparser representation of the data
through a well-matched spatial dictionary, we can store and
communicate the scene information more efficiently.

An important note is that we did not change the crosstalk
matrix from [2]. Since the crosstalk matrix is currently de-
signed to give the lowest mutual coherence of A for an identity
matrix as the spatial dictionary; it is sub-optimal for use with
our spatial dictionary D = [Dpt,Dext], or any other for that
matter. A more optimal crosstalk matrix could be designed for
each choice of D and P as was done in [1], [2]. However, even
with a sub-optimal crosstalk matrix, we are able to achieve
an accurate, sparse representation of the scene. In the future,
crosstalk matrix design should be considered more carefully
and with the spatial dictionary in mind.
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